Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Structure And Strength: Anisotropic Polyvinyl Alcohol Hydrogels And Spider Mite Silk Fibres, Stephen Hudson Jun 2011

Structure And Strength: Anisotropic Polyvinyl Alcohol Hydrogels And Spider Mite Silk Fibres, Stephen Hudson

Electronic Thesis and Dissertation Repository

Polyvinyl alcohol (PVA) is a hydrophilic, biocompatible polymer which can be made into physically cross-linked hydrogels by freezing and thawing PVA solution. These hydrogels can be made with anisotropic mechanical properties closely matching those of porcine aorta, making them a promising material for producing artificial heart valves and heart valve stents.

Small- and ultra small-angle neutron scattering has been used to study the structure of isotropic and anisotropic PVA hydrogels at length-scales of 2 nm to 10 μm. By supplementing the neutron data with data from atomic force microscopy, a large range of length-scales have been probed, within which structural …


Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali Jan 2011

Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali

Physics Faculty Publications

The effect of nanosecond pulsed laser excitation on surface diffusion during the growth of Ge on Si(100) at 250 °C was studied. In situ reflection high-energy electron diffraction was used to measure the surface diffusion coefficient while ex situ atomic force microscopy was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during the growth of Ge on Si(100), changes the growth morphology, improves the crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface …


Fabrication Of Organosilane Nanostructures As Selective Sites For Surface Chemical Reactions, Kathie Lee Lusker Jan 2011

Fabrication Of Organosilane Nanostructures As Selective Sites For Surface Chemical Reactions, Kathie Lee Lusker

LSU Doctoral Dissertations

Naturally self-assembled mesospheres provide a practical route for controlling the arrangement of materials on surfaces at the nanoscale. Periodic arrays of well-defined nanostructures can be produced with different nanomaterials and interpattern spacings. Results presented in this dissertation demonstrate particle lithography methods developed for fabricating arrays of organosilane nanostructures. Surfaces were designed for the selective deposition of polymers and nanoparticles to produce multicomponent nanopatterns. The approaches for surface patterning provide new directions for studying surface chemistry at the molecular-level, and have practical application for emerging photovoltaic thin film technologies. Atomic force microscopy (AFM) provides unique capabilities for molecular visualization and ultrasensitive …


Dynamic Measurements With Scanning Probe Microscopy: Surface Studies Using Nanostructured Test Platforms Of Metalloporphyrins, Nanoparticles And Amyloid Fibrils, Wilson K. Serem Jan 2011

Dynamic Measurements With Scanning Probe Microscopy: Surface Studies Using Nanostructured Test Platforms Of Metalloporphyrins, Nanoparticles And Amyloid Fibrils, Wilson K. Serem

LSU Doctoral Dissertations

A hybrid imaging mode for characterization of magnetic nanomaterials has been developed, using atomic force microscopy (AFM) combined with electromagnetic sample actuation. Instead of using a coated AFM probe as a magnetic sensor; our strategy is to use a nonmagnetic probe with contact mode AFM to characterize the vibration of magnetic and superparamagnetic nanomaterials responding to the flux of an AC electromagnetic field. We refer to the hybrid imaging mode as magnetic sample modulation (MSM-AFM). An oscillating magnetic field is produced by applying an AC current to a wire coil solenoid placed under the sample stage for tuning selected parameters …


Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali Jan 2011

Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Low temperature epitaxy of Ge quantum dots on Si (100) - (2×1) by femtosecond pulsed laser deposition under femtosecond laser excitation was investigated. Reflection high-energy electron diffraction and atomic force microscopy were used to analyze the growth mode and morphology. Epitaxial growth was achieved at ∼70 °C by using femtosecond laser excitation of the substrate. A purely electronic mechanism of enhanced surface diffusion of the Ge adatoms is proposed. © 2011 American Institute of Physics. [doi:10.1063/1.3537813]