Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Experimental Investigation Of A Rubidium-Argon Dual Species Magneto-Optical Trap, Hauke Christian Busch Apr 2004

Experimental Investigation Of A Rubidium-Argon Dual Species Magneto-Optical Trap, Hauke Christian Busch

Physics Theses & Dissertations

The first simultaneous cooling and confinement of two different atomic species from opposite sides of the periodic table in a dual magneto optical trap (DMOT) has been accomplished. The alkali-metal 85Rb and the noble gas 40Ar* have been simultaneously confined, characterized, and interspecies interaction parameters have been measured. The DMOT confined 1.2 × 106 85Rb atoms at a density of 1 × 1010/cm3 and 1.4 × 106 40Ar* atoms with a density of 1.2 × 1010/cm3. A collisional loss rate coefficient for Rb-Ar* has been determined to …


Advances In Pattern Recognition Algorithms, Architectures, And Devices, Mohammad S. Alam, Mohammad A. Karim Jan 2004

Advances In Pattern Recognition Algorithms, Architectures, And Devices, Mohammad S. Alam, Mohammad A. Karim

Office of Research Faculty & Staff Publications

Over the last decade, tremendous advances have been made in the general area of pattern recognition techniques, devices, and algorithms. We have had the distinct pleasure of witnessing this remarkable growth as evidenced through their dissemination in the previous Optical Engineering special sections we have jointly edited— January 1998, March 1998, May 2000, and January 2002. Twenty-six papers were finally accepted for this latest special section, encompassing the recent trends and advancements made in many different areas of pattern recognition techniques utilizing algorithms, architectures, implementations, and devices. These techniques include matched spatial filter based recognition, hit-miss transforms, invariant pattern recognition, …


Comparative Analysis Of Bragg Fibers, Shangping Guo, Sacharia Albin, Robert S. Rogowski Jan 2004

Comparative Analysis Of Bragg Fibers, Shangping Guo, Sacharia Albin, Robert S. Rogowski

Electrical & Computer Engineering Faculty Publications

In this paper, we compare three analysis methods for Bragg fibers, viz. the transfer matrix method, the asymptotic method and the Galerkin method. We also show that with minor modifications, the transfer matrix method is able to calculate exactly the leakage loss of Bragg fibers due to a finite number of H/L layers. This approach is more straightforward than the commonly used Chew’s method. It is shown that the asymptotic approximation condition should be satisfied in order to get accurate results. The TE and TM modes, and the band gap structures are analyzed using Galerkin method.


Loss And Dispersion Analysis Of Microstructured Fibers By Finite-Difference Method, Shangping Guo, Feng Wu, Sacharia Albin, Hsiang Tai, Robert S. Rogowski Jan 2004

Loss And Dispersion Analysis Of Microstructured Fibers By Finite-Difference Method, Shangping Guo, Feng Wu, Sacharia Albin, Hsiang Tai, Robert S. Rogowski

Electrical & Computer Engineering Faculty Publications

The dispersion and loss in microstructured fibers are studied using a full-vectorial compact-2D finite-difference method in frequency-domain. This method solves a standard eigen-value problem from the Maxwell’s equations directly and obtains complex propagation constants of the modes using anisotropic perfectly matched layers. A dielectric constant averaging technique using Ampere’s law across the curved media interface is presented. Both the real and the imaginary parts of the complex propagation constant can be obtained with a high accuracy and fast convergence. Material loss, dispersion and spurious modes are also discussed.


Photonic Band Gap Analysis Using Finite-Difference Frequency-Domain Method, Shangping Guo, Feng Wu, Sacharia Albin Jan 2004

Photonic Band Gap Analysis Using Finite-Difference Frequency-Domain Method, Shangping Guo, Feng Wu, Sacharia Albin

Electrical & Computer Engineering Faculty Publications

A finite-difference frequency-domain (FDFD) method is applied for photonic band gap calculations. The Maxwell’s equations under generalized coordinates are solved for both orthogonal and non-orthogonal lattice geometries. Complete and accurate band gap information is obtained by using this FDFD approach. Numerical results for 2D TE/TM modes in square and triangular lattices are in excellent agreements with results from plane wave method (PWM). The accuracy, convergence and computation time of this method are also discussed.


Are Microbubbles Necessary For The Breakdown Of Liquid Water Subjected To A Submicrosecond Pulse?, R. P. Joshi, J. Qian, G. Zhao, J. Kolb, K. H. Schoenbach, E. Schamiloglu, J. Gaudet Jan 2004

Are Microbubbles Necessary For The Breakdown Of Liquid Water Subjected To A Submicrosecond Pulse?, R. P. Joshi, J. Qian, G. Zhao, J. Kolb, K. H. Schoenbach, E. Schamiloglu, J. Gaudet

Electrical & Computer Engineering Faculty Publications

Electrical breakdown in homogeneous liquid water for an ∼ 100 ns voltage pulse is analyzed. It is shown that electron-impact ionization is not likely to be important and could only be operative for low-density situations or possibly under optical excitation. Simulation results also indicate that field ionization of liquid water can lead to a liquid breakdown provided the ionization energies were very low in the order of 2.3eV. Under such conditions, an electric-field collapse at the anode and plasma propagation toward the cathode, with minimal physical charge transport, is predicted. However, the low, unphysical ionization energies necessary for matching …