Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Xenon Excimer Emission From Pulsed Microhollow Cathode Discharges, M. Moselhy, R. H. Stark, K. H. Schoenbach, U. Kogelschatz Jan 2001

Xenon Excimer Emission From Pulsed Microhollow Cathode Discharges, M. Moselhy, R. H. Stark, K. H. Schoenbach, U. Kogelschatz

Bioelectrics Publications

By applying electrical pulses of 20 ns duration to xenon microplasmas, generated by direct current microhollow cathode discharges, we were able to increase the xenon excimer emission by more than an order of magnitude over direct current discharge excimer emission. For pulsed voltages in excess of 500 V, the optical power at 172 nm was found to increase exponentially with voltage. Largest values obtained were 2.75 W of vacuum-ultraviolet optical power emitted from a single microhollow cathode discharge in 400 Torr xenon with a 750 V pulse applied to a discharge. Highest radiative emittance was 15.2 W/cm2. The …


Electron Heating In Atmospheric Pressure Glow Discharges, Robert H. Stark, Karl H. Schoenbach Jan 2001

Electron Heating In Atmospheric Pressure Glow Discharges, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

The application of nanosecond voltage pulses to weakly ionized atmospheric pressure plasmas allows heating the electrons without considerably increasing the gas temperature, provided that the duration of the pulses is less than the critical time for the development of glow-to-arc transitions. The shift in the electron energy distribution towards higher energies causes a temporary increase in the ionization rate, and consequently a strong rise in electron density. This increase in electron density is reflected in an increased decay time of the plasma after the pulse application. Experiments in atmospheric pressure air glow discharges with gas temperatures of approximately 2000 K …


Electron Cyclotron Resonance Heating In Spherical Plasmas: O-X-Ebw Mode Conversion In Mast, Josef Preinhaelter, M. A. Irzak, Linda L. Vahala, George Vahala Jan 2001

Electron Cyclotron Resonance Heating In Spherical Plasmas: O-X-Ebw Mode Conversion In Mast, Josef Preinhaelter, M. A. Irzak, Linda L. Vahala, George Vahala

Electrical & Computer Engineering Faculty Publications

Using a full wave solution, the O-X-EBW mode conversion is examined for density and magnetic profiles in MAST. The effects of magnetic shear and the sharp density pedestal for H-mode operation are considered with an eye to understanding both electron cyclotron emission (ECE) and electron cyclotron resonance heating (ECRH).