Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

1996

Physics

Light-Cone Quantization

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Θ Vacua In The Light-Cone Schwinger Model, Alex C. Kalloniatis, David G. Robertson Jul 1996

Θ Vacua In The Light-Cone Schwinger Model, Alex C. Kalloniatis, David G. Robertson

Physics Faculty Scholarship

We discuss the bosonized Schwinger model in light-cone quantization, using discretization as an infrared regulator. We consider both the light-cone Coulomb gauge, in which all gauge freedom can be removed and a physical Hilbert space employed, and the light-cone Weyl (temporal) gauge, in which the Hilbert space is unphysical and a Gauss law operator is used to select a physical subspace. We describe the different ways in which the θ vacuum is manifested depending on this choice of gauge, and compute the θ-dependence of the chiral condensate in each case.


The Vacuum In Light Cone Field Theory, David G. Robertson Jan 1996

The Vacuum In Light Cone Field Theory, David G. Robertson

Physics Faculty Scholarship

This is an overview of the problem of the vacuum in light-cone field theory, stressing its close connection to other puzzles regarding light-cone quantization. I explain the sense in which the light-cone vacuum is ``trivial,'' and describe a way of setting up a quantum field theory on null planes so that it is equivalent to the usual equal-time formulation. This construction is quite helpful in resolving the puzzling aspects of the light-cone formalism. It furthermore allows the extraction of effective Hamiltonians that incorporate vacuum physics, but that act in a Hilbert space in which the vacuum state is simple. The …