Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

Variational Data Assimilation For Two Interface Problems, Xuejian Li Jan 2022

Variational Data Assimilation For Two Interface Problems, Xuejian Li

Doctoral Dissertations

“Variational data assimilation (VDA) is a process that uses optimization techniques to determine an initial condition of a dynamical system such that its evolution best fits the observed data. In this dissertation, we develop and analyze the variational data assimilation method with finite element discretization for two interface problems, including the Parabolic Interface equation and the Stokes-Darcy equation with the Beavers-Joseph interface condition. By using Tikhonov regularization and formulating the VDA into an optimization problem, we establish the existence, uniqueness and stability of the optimal solution for each concerned case. Based on weak formulations of the Parabolic Interface equation and …


Optimal Communication Structures For Concurrent Computing, Andrii Berdnikov May 2021

Optimal Communication Structures For Concurrent Computing, Andrii Berdnikov

Doctoral Dissertations

This research focuses on communicative solvers that run concurrently and exchange information to improve performance. This “team of solvers” enables individual algorithms to communicate information regarding their progress and intermediate solutions, and allows them to synchronize memory structures with more “successful” counterparts. The result is that fewer nodes spend computational resources on “struggling” processes. The research is focused on optimization of communication structures that maximize algorithmic efficiency using the theoretical framework of Markov chains. Existing research addressing communication between the cooperative solvers on parallel systems lacks generality: Most studies consider a limited number of communication topologies and strategies, while the …


Benchmarks And Controls For Optimization With Quantum Annealing, Erica Kelley Grant Dec 2020

Benchmarks And Controls For Optimization With Quantum Annealing, Erica Kelley Grant

Doctoral Dissertations

Quantum annealing (QA) is a metaheuristic specialized for solving optimization problems which uses principles of adiabatic quantum computing, namely the adiabatic theorem. Some devices implement QA using quantum mechanical phenomena. These QA devices do not perfectly adhere to the adiabatic theorem because they are subject to thermal and magnetic noise. Thus, QA devices return statistical solutions with some probability of success where this probability is affected by the level of noise of the system. As these devices improve, it is believed that they will become less noisy and more accurate. However, some tuning strategies may further improve that probability of …


Computational Model For Neural Architecture Search, Ram Deepak Gottapu Jan 2020

Computational Model For Neural Architecture Search, Ram Deepak Gottapu

Doctoral Dissertations

"A long-standing goal in Deep Learning (DL) research is to design efficient architectures for a given dataset that are both accurate and computationally inexpensive. At present, designing deep learning architectures for a real-world application requires both human expertise and considerable effort as they are either handcrafted by careful experimentation or modified from a handful of existing models. This method is inefficient as the process of architecture design is highly time-consuming and computationally expensive.

The research presents an approach to automate the process of deep learning architecture design through a modeling procedure. In particular, it first introduces a framework that treats …


Inference In Networking Systems With Designed Measurements, Chang Liu Mar 2017

Inference In Networking Systems With Designed Measurements, Chang Liu

Doctoral Dissertations

Networking systems consist of network infrastructures and the end-hosts have been essential in supporting our daily communication, delivering huge amount of content and large number of services, and providing large scale distributed computing. To monitor and optimize the performance of such networking systems, or to provide flexible functionalities for the applications running on top of them, it is important to know the internal metrics of the networking systems such as link loss rates or path delays. The internal metrics are often not directly available due to the scale and complexity of the networking systems. This motivates the techniques of inference …


Achieving High Reliability And Efficiency In Maintaining Large-Scale Storage Systems Through Optimal Resource Provisioning And Data Placement, Lipeng Wan Aug 2016

Achieving High Reliability And Efficiency In Maintaining Large-Scale Storage Systems Through Optimal Resource Provisioning And Data Placement, Lipeng Wan

Doctoral Dissertations

With the explosive increase in the amount of data being generated by various applications, large-scale distributed and parallel storage systems have become common data storage solutions and been widely deployed and utilized in both industry and academia. While these high performance storage systems significantly accelerate the data storage and retrieval, they also bring some critical issues in system maintenance and management. In this dissertation, I propose three methodologies to address three of these critical issues.

First, I develop an optimal resource management and spare provisioning model to minimize the impact brought by component failures and ensure a highly operational experience …


Mechanisms For Improving Information Quality In Smartphone Crowdsensing Systems, Francesco Restuccia Jan 2016

Mechanisms For Improving Information Quality In Smartphone Crowdsensing Systems, Francesco Restuccia

Doctoral Dissertations

"Given its potential for a large variety of real-life applications, smartphone crowdsensing has recently gained tremendous attention from the research community. Smartphone crowdsensing is a paradigm that allows ordinary citizens to participate in large-scale sensing surveys by using user-friendly applications installed in their smartphones. In this way, fine-grained sensing information is obtained from smartphone users without employing fixed and expensive infrastructure, and with negligible maintenance costs.

Existing smartphone sensing systems depend completely on the participants' willingness to submit up-to-date and accurate information regarding the events being monitored. Therefore, it becomes paramount to scalably and effectively determine, enforce, and optimize the …


Developing An Optimal Model For Infant Home Visitation, Isaac Atuahene Aug 2015

Developing An Optimal Model For Infant Home Visitation, Isaac Atuahene

Doctoral Dissertations

The United States, Great Britain, Denmark, Canada and many other countries have accepted home visitation (HV) as a promising strategy for interventions for infants after births and for their mothers. Prior HV studies have focused on theoretical foundations, evaluations of programs, cost/benefit analysis and cost estimation by using hospital/payer/insurance data to prove its effectiveness and high cost. As governments and private organizations continue to fund HVs, it is an opportune time to develop and formulate operations research (OR) models of HV coverage, quality and cost so they might be used in program implementation as done for adult home healthcare (HHC) …


Methods For Quantitative Local Structure Analysis Of Crystalline Materials Employing High Performance Computing, Tara Marie Michels-Clark May 2014

Methods For Quantitative Local Structure Analysis Of Crystalline Materials Employing High Performance Computing, Tara Marie Michels-Clark

Doctoral Dissertations

A fundamental computational methodology was investigated to extract quantitative local structure information from single crystal diffuse scattering data. The principles of a highly efficient, parallelizable local structure analysis using massively parallel computing resources at Oak Ridge National Laboratory (ORNL) are demonstrated on an organic hydrocarbon compound containing stacking faults, Tris(bicyclo[2.1.1]hexeno)benzene. A probabilistic model of the stacking variations with a five layer interaction depth was developed. The final model structure motif statistics are verified using the steady state distribution of Markov matrix representing the four to five layer transitions. The computations revealed that highly parallelizable “structure-clones” could replace less computationally efficient …


Indefinite Knapsack Separable Quadratic Programming: Methods And Applications, Jaehwan Jeong May 2014

Indefinite Knapsack Separable Quadratic Programming: Methods And Applications, Jaehwan Jeong

Doctoral Dissertations

Quadratic programming (QP) has received significant consideration due to an extensive list of applications. Although polynomial time algorithms for the convex case have been developed, the solution of large scale QPs is challenging due to the computer memory and speed limitations. Moreover, if the QP is nonconvex or includes integer variables, the problem is NP-hard. Therefore, no known algorithm can solve such QPs efficiently. Alternatively, row-aggregation and diagonalization techniques have been developed to solve QP by a sub-problem, knapsack separable QP (KSQP), which has a separable objective function and is constrained by a single knapsack linear constraint and box constraints. …


Performance Modeling And Optimization Techniques For Heterogeneous Computing, Supada Laosooksathit Jan 2014

Performance Modeling And Optimization Techniques For Heterogeneous Computing, Supada Laosooksathit

Doctoral Dissertations

Since Graphics Processing Units (CPUs) have increasingly gained popularity amoung non-graphic and computational applications, known as General-Purpose computation on GPU (GPGPU), CPUs have been deployed in many clusters, including the world's fastest supercomputer. However, to make the most efficiency from a GPU system, one should consider both performance and reliability of the system.

This dissertation makes four major contributions. First, the two-level checkpoint/restart protocol that aims to reduce the checkpoint and recovery costs with a latency hiding strategy in a system between a CPU (Central Processing Unit) and a GPU is proposed. The experimental results and analysis reveals some benefits, …


Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey Oct 2013

Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey

Doctoral Dissertations

Currently, the most commonly used treatments for cancerous tumors (chemotherapy, radiation, etc.) have almost no method of monitoring the administration of the treatment for adverse effects in real time. Without any real time feedback or control, treatment becomes a "guess and check" method with no way of predicting the effects of the drugs based on the actual bioavailability to the patient's body. One particular drug may be effective for one patient, yet provide no benefit to another. Doctors and scientists do not routinely attempt to quantifiably explain this discrepancy. In this work, mathematical modeling and analysis techniques are joined together …