Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Physical Sciences and Mathematics

Modeling And Numerical Analysis Of The Cholesteric Landau-De Gennes Model, Andrew L. Hicks Apr 2024

Modeling And Numerical Analysis Of The Cholesteric Landau-De Gennes Model, Andrew L. Hicks

LSU Doctoral Dissertations

This thesis gives an analysis of modeling and numerical issues in the Landau-de Gennes (LdG) model of nematic liquid crystals (LCs) with cholesteric effects. We derive various time-step restrictions for a (weighted) $L^2$ gradient flow scheme to be energy decreasing. Furthermore, we prove a mesh size restriction, for finite element discretizations, that is critical to avoid spurious numerical artifacts in discrete minimizers that is not well-known in the LC literature, particularly when simulating cholesteric LCs that exhibit ``twist''. Furthermore, we perform a computational exploration of the model and present several numerical simulations in 3-D, on both slab geometries and spherical …


Particle Swarm Optimization For High Rigidity Spectrometer, Yicheng Wang Jan 2023

Particle Swarm Optimization For High Rigidity Spectrometer, Yicheng Wang

Honors Theses

The goal of this project is to find reliable parameter settings for a multi-dimensional global optimizer to optimize the performance of a large acceptance ion optical system for the requirements of nuclear physics experiments. We develop and test the Particle Swarm Optimization (PSO), a global optimization algorithm designed for continuous multi-dimensional problems, on a large acceptance particle beam separator, the High Rigidity Spectrometer (HRS) at the Facility for Rare Isotope Beams (FRIB), which is a laboratory specializing in the production and experimental study of short-lived nuclear matter. We split the HRS into two sections, the High-Transmission Beamline (HTBL) and the …


Optimization Of Quantum Circuits Using Spin Bus Multiqubit Gates For Quantum Dots, Miguel Gonzalo Rodriguez Aug 2022

Optimization Of Quantum Circuits Using Spin Bus Multiqubit Gates For Quantum Dots, Miguel Gonzalo Rodriguez

Open Access Theses & Dissertations

The current conventional method for designing quantum circuits is to employ a number of single- and two-qubit gates, which often necessitate a lengthy sequence, imposing severe constraints on quantum coherence and quantum circuit complexity. Coupling multiple spin qubits to a common spin chain can result in a generically multiqubit gate. It is demonstrated that the multiqubit gate can substantially reduce the depth of quantum circuits and establish multiqubit entanglement considerably more quickly.


Pymoocfd - A Multi-Objective Optimization Framework For Cfd, George Martin Cunningham Love Jan 2022

Pymoocfd - A Multi-Objective Optimization Framework For Cfd, George Martin Cunningham Love

Graduate College Dissertations and Theses

Modern computational resource have solidified the use of computer modeling as an integral part of the engineering design process. This is particularly impressive when it comes to high-dimensional models such as computational fluid dynamics (CFD) models. CFD models are now capable of producing results with a level of confidence that would previously have required physical experimentation. Simultaneously, the development of machine learning techniques and algorithms has increased exponentially in recent years. This acceleration is also due to the widespread availability of modern computational resources. Thus far, the cross-over between these fields has been mostly focused on computer models with low …


Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac Jan 2022

Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac

Masters Theses

“Critical experiments are used by nuclear data evaluators and criticality safety engineers to validate nuclear data and computational methods. Many of these experiments are designed to maximize the sensitivity to a certain nuclide-reaction pair in an energy range of interest. Traditionally, a parameter sweep is conducted over a set of experimental variables to find a configuration that is critical and maximally sensitive. As additional variables are added, the total number of configurations increases exponentially and quickly becomes prohibitively computationally expensive to calculate, especially using Monte Carlo methods.

This work presents the development of a particle swarm optimization algorithm to design …


An Upgraded Photoinjector For The Argonne Wakefield Accelerator, Emily Frame Jan 2022

An Upgraded Photoinjector For The Argonne Wakefield Accelerator, Emily Frame

Graduate Research Theses & Dissertations

The Argonne Wakefield Accelerator (AWA) is planning an upgrade of the drive-beam accelerator’s photoinjector, the driving force of electron generation. The upgrade’s main goal is to improve beam brightness using linear accelerating cavities and a radiofrequency-gun cavity. In the process of this upgrade, one of the beam focusing solenoids is being redesigned. A beam dynamics optimization is performed for two new solenoid designs, with considerations for producing low-charge (∼ 1 nC) electron bunches as well as operations at higher charges (∼ 50 nC). This project focuses on the optimization study for both the low- and high-charge regimes, exploring the impact …


Can Parallel Gravitational Search Algorithm Effectively Choose Parameters For Photovoltaic Cell Current Voltage Characteristics?, Alan Kirkpatrick May 2021

Can Parallel Gravitational Search Algorithm Effectively Choose Parameters For Photovoltaic Cell Current Voltage Characteristics?, Alan Kirkpatrick

Honors Projects

This study asks the question “Can parallel Gravitational Search Algorithm (GSA) effectively choose parameters for photovoltaic cell current voltage characteristics?” These parameters will be plugged into the Single Diode Model to create the IV curve. It will also investigate Particle Swarm Optimization (PSO) and a population based random search (PBRS) to see if GSA performs the search better and or more quickly than alternative algorithms


Benchmarks And Controls For Optimization With Quantum Annealing, Erica Kelley Grant Dec 2020

Benchmarks And Controls For Optimization With Quantum Annealing, Erica Kelley Grant

Doctoral Dissertations

Quantum annealing (QA) is a metaheuristic specialized for solving optimization problems which uses principles of adiabatic quantum computing, namely the adiabatic theorem. Some devices implement QA using quantum mechanical phenomena. These QA devices do not perfectly adhere to the adiabatic theorem because they are subject to thermal and magnetic noise. Thus, QA devices return statistical solutions with some probability of success where this probability is affected by the level of noise of the system. As these devices improve, it is believed that they will become less noisy and more accurate. However, some tuning strategies may further improve that probability of …


Data Assimilation For Conductance-Based Neuronal Models, Matthew Moye May 2020

Data Assimilation For Conductance-Based Neuronal Models, Matthew Moye

Dissertations

This dissertation illustrates the use of data assimilation algorithms to estimate unobserved variables and unknown parameters of conductance-based neuronal models. Modern data assimilation (DA) techniques are widely used in climate science and weather prediction, but have only recently begun to be applied in neuroscience. The two main classes of DA techniques are sequential methods and variational methods. Throughout this work, twin experiments, where the data is synthetically generated from output of the model, are used to validate use of these techniques for conductance-based models observing only the voltage trace. In Chapter 1, these techniques are described in detail and the …


Target Control Of Networked Systems, Isaac S. Klickstein Apr 2020

Target Control Of Networked Systems, Isaac S. Klickstein

Mechanical Engineering ETDs

The control of complex networks is an emerging field yet it has already garnered interest from across the scientific disciplines, from robotics to sociology. It has quickly been noticed that many of the classical techniques from controls engineering, while applicable, are not as illuminating as they were for single systems of relatively small dimension. Instead, properties borrowed from graph theory provide equivalent but more practical conditions to guarantee controllability, reachability, observability, and other typical properties of interest to the controls engineer when dealing with large networked systems. This manuscript covers three topics investigated in detail by the author: (i) the …


Electromagnetic Analysis Of Bidirectional Reflectance From Roughened Surfaces And Applications To Surface Shape Recovery, Julian Antolin Camarena Nov 2019

Electromagnetic Analysis Of Bidirectional Reflectance From Roughened Surfaces And Applications To Surface Shape Recovery, Julian Antolin Camarena

Physics & Astronomy ETDs

Scattering from randomly rough surfaces is a well-established sub area of electrodynamics. There remains much to be done since each surface and optical processes that may occur in within the scattering medium, and countless other scenarios, is different. There are also illumination models that describe lighting in a scene on the macroscopic scale where geometrical optics can be considered adequate. Of particular interest for us is the intersection of the physical scattering theories and the illumination models. We present two contributions: 1) A minimum of two independent images are needed since any opaque surface can be uniquely specified in terms …


Framework For Algorithmically Optimizing Longitudinal Health Outcomes: Examples In Cancer Radiotherapy And Occupational Radiation Protection, Lydia Joyce Wilson May 2019

Framework For Algorithmically Optimizing Longitudinal Health Outcomes: Examples In Cancer Radiotherapy And Occupational Radiation Protection, Lydia Joyce Wilson

LSU Doctoral Dissertations

Background: Advancements in the treatment of non-infectious disease have enabled survival rates to steadily increase in recent decades (e.g., diabetes, heart disease, and cancer). Epidemiological studies have revealed that the treatments for these diseases can have life-threatening and/or life–altering effects. Thus, realizing the full beneficial potential of advanced treatments necessitates new tools to algorithmically consider all major components of the health outcome, including benefit and detriment. The goal of this dissertation was to develop a framework for improving projected health outcomes following planned radiation exposures in consideration of all beneficial and detrimental, early and late, and fatal and non-fatal …


Optimizing Glide-Flight Paths, Rory Cveta O'Daly Maglich Jan 2019

Optimizing Glide-Flight Paths, Rory Cveta O'Daly Maglich

Senior Projects Spring 2019

Flight is no rare event in today's society, and aviation is a global industry that significantly contributes to carbon emissions and global warming. Thus, my project theorizes how aviation might be better optimized at a fundamental level to improve aerodynamic efficiency and reduce carbon emissions. This is done by analyzing two systems of flight: gliding and powered flight. In pursuit of an understanding of a hybrid of these flight systems, I first look to qualitatively analyze the benefit of gliding over powered aviation. Powering an aircraft involves an engine that generates thrust, while gliding only involves three forces: lift, drag, …


Optimization And Control Of Arrays Of Wave Energy Converters, Jianyang Lyu Jan 2019

Optimization And Control Of Arrays Of Wave Energy Converters, Jianyang Lyu

Dissertations, Master's Theses and Master's Reports

Wave Energy Converter Array is a practical approach to harvest ocean wave energy. To leverage the potential of the WEC array in terms of energy extraction, it is essential to have a properly designed array configuration and control system. This thesis explores the optimal configuration of Wave Energy Converters (WECs) arrays and their optimal control. The optimization of the WEC array allows both dimensions of individual WECs as well as the array layout to varying. In the first optimization problem, cylindrical buoys are assumed in the array where their radii and drafts are optimization parameters. Genetic Algorithms are used for …


Some Results On A Class Of Functional Optimization Problems, David Rushing Dewhurst Jan 2018

Some Results On A Class Of Functional Optimization Problems, David Rushing Dewhurst

Graduate College Dissertations and Theses

We first describe a general class of optimization problems that describe many natu- ral, economic, and statistical phenomena. After noting the existence of a conserved quantity in a transformed coordinate system, we outline several instances of these problems in statistical physics, facility allocation, and machine learning. A dynamic description and statement of a partial inverse problem follow. When attempting to optimize the state of a system governed by the generalized equipartitioning princi- ple, it is vital to understand the nature of the governing probability distribution. We show that optimiziation for the incorrect probability distribution can have catas- trophic results, e.g., …


Improving Ventricular Catheter Design Through Computational Fluid Dynamics, Sofy Hefets Weisenberg May 2016

Improving Ventricular Catheter Design Through Computational Fluid Dynamics, Sofy Hefets Weisenberg

Masters Theses

Cerebrospinal fluid (CSF) shunts are fully implantable medical devices that are used to treat patients suffering from conditions characterized by elevated intracranial pressure, such as hydrocephalus. In cases of shunt failure or malfunction, patients are often required to endure one or more revision surgeries to replace all or part of the shunt. One of the primary causes of CSF shunt failure is obstruction of the ventricular catheter, a component of the shunt system implanted directly into the brain's ventricular system. This work aims to improve the design of ventricular catheters in order to reduce the incidence of catheter obstruction and …


High Dimensional Non-Linear Optimization Of Molecular Models, Joseph C. Fogarty Nov 2014

High Dimensional Non-Linear Optimization Of Molecular Models, Joseph C. Fogarty

USF Tampa Graduate Theses and Dissertations

Molecular models allow computer simulations to predict the microscopic properties of macroscopic systems. Molecular modeling can also provide a fully understood test system for the application of theoretical methods. The power of a model lies in the accuracy of the parameter values which govern its mathematical behavior. In this work, a new software, called ParOpt, for general high dimensional non-linear optimization will be presented. The software provides a very general framework for the optimization of a wide variety of parameter sets. The software is especially powerful when applied to the difficult task of molecular model parameter optimization. Three applications of …


Characterization Of A Boron Carbide Heterojunction Neutron Detector, James E. Bevins Mar 2011

Characterization Of A Boron Carbide Heterojunction Neutron Detector, James E. Bevins

Theses and Dissertations

New methods for neutron detection have become an important area of research in support of national security objectives. In support of this effort, p-type B5C on n-type Si heterojunction diodes have been built and tested. This research sought to optimize the boron carbide (BC) diode by coupling the nuclear physics modeling capability of GEANT4 and TRIM with the semiconductor device simulation tools. Through an iterative modeling process of controllable parameters, optimal device construction was determined such detection efficiency and charge collection were optimized. This allows an estimation of expected charge collection and efficiency given a set of operating …


Optimization Of Control Source And Error Sensor Locations In Free Field Active Noise Control, Connor Raymond Duke Aug 2007

Optimization Of Control Source And Error Sensor Locations In Free Field Active Noise Control, Connor Raymond Duke

Theses and Dissertations

Previous work has shown that active noise control (ANC) can be applied to axial cooling fans. Optimization of the control source and error sensor placement is desired to maximize the attenuation using ANC. A genetic algorithm was developed to find the optimal placement of control sources for a given primary source. The optimal configuration of control sources around a single primary source was shown to be a linear arrangement of the sources. This holds true for both two-dimensional as well as three-dimensional configurations. The higher-order radiation of the linear arrangement has also been verified experimentally, but the improvement in the …


Phase-Matching Optimization Of Laser High-Order Harmonics Generated In A Gas Cell, Julia Robin Miller Sutherland Jul 2005

Phase-Matching Optimization Of Laser High-Order Harmonics Generated In A Gas Cell, Julia Robin Miller Sutherland

Theses and Dissertations

Ten-millijoule, thirty-five femtosecond, 800 nm (~40 nm bandwidth) laser pulses are used to study high-order harmonic generation in helium- and neon-filled gas cells of various lengths. Harmonic orders in the range of 50 to 100 are investigated. A semi-infinite cell geometry produces brighter harmonics than cells of sub-centimeter length. In the semi-infinite geometry, the gas occupies the region from the focusing lens to a thin exit foil near the laser focus. Counter-propagating light is used to directly probe where the high harmonics are generated within the laser focus and to investigate phase matching. The phase matching under optimized harmonic generation …