Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Optimization

Engineering

Institution
Publication Year
Publication

Articles 1 - 30 of 68

Full-Text Articles in Physical Sciences and Mathematics

Sequential Optimization For Stressor-Informed Test Planning Through Integration Of Experimental And Simulated Data, Jacob Brecheisen May 2024

Sequential Optimization For Stressor-Informed Test Planning Through Integration Of Experimental And Simulated Data, Jacob Brecheisen

Data Science Undergraduate Honors Theses

This technical report details an innovative approach in reliability engineering aimed at maximizing system durability through a synergistic use of physical experimentation and computer-based modeling. Our methodology explores the efficient design and analysis of computer experiments and physical tests to facilitate accelerated reliability growth, while leveraging a sequential integration of data from these two distinct sources: costly physical experiments, characterized by random errors, and inexpensive computer simulations, marked by inherent systematic errors. The key innovation lies in the adoption of a closed-loop design and analysis method. This method begins by identifying a viable subset of important environmental stressors—such as temperature, …


Novel Approach For Non-Invasive Prediction Of Body Shape And Habitus, Emma Young Jun 2023

Novel Approach For Non-Invasive Prediction Of Body Shape And Habitus, Emma Young

Electronic Theses and Dissertations

While marker-based motion capture remains the gold standard in measuring human movement, accuracy is influenced by soft-tissue artifacts, particularly for subjects with high body mass index (BMI) where markers are not placed close to the underlying bone. Obesity influences joint loads and motion patterns, and BMI may not be sufficient to capture the distribution of a subject’s weight or to differentiate differences between subjects. Subjects in need of a joint replacement are more likely to have mobility issues or pain, which prevents exercise. Obesity also increases the likelihood of needing a total joint replacement. Accurate movement data for subjects with …


Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga Jun 2023

Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga

Master's Theses

On-orbit satellite servicing is critical to maximizing space utilization and sustainability and is of growing interest for commercial, civil, and defense applications. Reliance on astronauts or anchored robotic arms for the servicing of next-generation large, complex space structures operating beyond Low Earth Orbit is impractical. Substantial literature has investigated the mission design and analysis of robotic servicing missions that utilize a single servicing satellite to approach and service a single target satellite. This motivates the present research to investigate a fleet of servicing satellites performing several operations for a large, central space structure.

This research leverages a distributed control approach, …


Addressing The Challenged Of Dcop Based Decision-Making Algorithms In Modern Power Systems, Luis Daniel Ramirez Burgueno May 2023

Addressing The Challenged Of Dcop Based Decision-Making Algorithms In Modern Power Systems, Luis Daniel Ramirez Burgueno

Open Access Theses & Dissertations

Natural disasters have been determined as the leading cause of power outages, causing not only huge economic losses, but also the interruption of crucial welfare activities and the arise of security concerns. Because of the later, decision-making considering grid modernization, power system economics, and system resiliency has been a crucial theme in power systemsâ?? research. The need to better withstand catastrophic events and reducing the dependency of bulky generating units has propelled the development and better management of behind-the-meter generation or distributed energy resources (DERs). DERs can assist in the grid in different manners, not only by meeting energy demand …


A Machine Learning Approach For Predicting Clinical Trial Patient Enrollment In Drug Development Portfolio Demand Planning, Ahmed Shoieb May 2023

A Machine Learning Approach For Predicting Clinical Trial Patient Enrollment In Drug Development Portfolio Demand Planning, Ahmed Shoieb

Masters Theses

One of the biggest challenges the clinical research industry currently faces is the accurate forecasting of patient enrollment (namely if and when a clinical trial will achieve full enrollment), as the stochastic behavior of enrollment can significantly contribute to delays in the development of new drugs, increases in duration and costs of clinical trials, and the over- or under- estimation of clinical supply. This study proposes a Machine Learning model using a Fully Convolutional Network (FCN) that is trained on a dataset of 100,000 patient enrollment data points including patient age, patient gender, patient disease, investigational product, study phase, blinded …


Data-Driven Reachability Of Non-Linear Systems Via Optimization Of Chen-Fliess Series, Ivan Perez Avellaneda Jan 2023

Data-Driven Reachability Of Non-Linear Systems Via Optimization Of Chen-Fliess Series, Ivan Perez Avellaneda

Graduate College Dissertations and Theses

A reachable set is the set of all possible states produced by applying a set of inputs, initial states, and parameters. The fundamental problem of reachability is checking if a set of states is reached provided a set of inputs, initial states, and parameters, typically, in a finite time. In the engineering field, reachability analysis is used to test the guarantees of the operation’s safety of a system. In the present work, the reachability analysis of nonlinear control affine systems is studied by means of the Chen-Fliess series. Different perspectives for addressing the reachability problem, such as interval arithmetic, mixed-monotonicity, …


Peer-To-Peer Energy Trading In Smart Residential Environment With User Behavioral Modeling, Ashutosh Timilsina Jan 2023

Peer-To-Peer Energy Trading In Smart Residential Environment With User Behavioral Modeling, Ashutosh Timilsina

Theses and Dissertations--Computer Science

Electric power systems are transforming from a centralized unidirectional market to a decentralized open market. With this shift, the end-users have the possibility to actively participate in local energy exchanges, with or without the involvement of the main grid. Rapidly reducing prices for Renewable Energy Technologies (RETs), supported by their ease of installation and operation, with the facilitation of Electric Vehicles (EV) and Smart Grid (SG) technologies to make bidirectional flow of energy possible, has contributed to this changing landscape in the distribution side of the traditional power grid.

Trading energy among users in a decentralized fashion has been referred …


Optimal Design And Operation Of Integrated Hydrogen Generation And Utilization Plants, Ijiwole Solomon Ijiyinka Jan 2023

Optimal Design And Operation Of Integrated Hydrogen Generation And Utilization Plants, Ijiwole Solomon Ijiyinka

Graduate Theses, Dissertations, and Problem Reports

There are considerable efforts worldwide for reducing the use of fossil fuel for energy production. While renewable energy sources are being increasingly used, fossil fuel still contribute about 80% of the energy used worldwide. As a result, the level of CO2 is still increasing fast in the atmosphere currently exceeding about 410 parts per million (ppm). For reducing CO2 build up in the atmosphere, various approaches are being investigated. For the electric power generation sector, two key approaches are post-combustion CO2 capture and use of hydrogen as a fuel for power generation. These two solutions can also …


Low-Reynolds-Number Locomotion Via Reinforcement Learning, Yuexin Liu Aug 2022

Low-Reynolds-Number Locomotion Via Reinforcement Learning, Yuexin Liu

Dissertations

This dissertation summarizes computational results from applying reinforcement learning and deep neural network to the designs of artificial microswimmers in the inertialess regime, where the viscous dissipation in the surrounding fluid environment dominates and the swimmer’s inertia is completely negligible. In particular, works in this dissertation consist of four interrelated studies of the design of microswimmers for different tasks: (1) a one-dimensional microswimmer in free-space that moves towards the target via translation, (2) a one-dimensional microswimmer in a periodic domain that rotates to reach the target, (3) a two-dimensional microswimmer that switches gaits to navigate to the designated targets in …


Model-Based Deep Learning For Computational Imaging, Xiaojian Xu Aug 2022

Model-Based Deep Learning For Computational Imaging, Xiaojian Xu

McKelvey School of Engineering Theses & Dissertations

This dissertation addresses model-based deep learning for computational imaging. The motivation of our work is driven by the increasing interests in the combination of imaging model, which provides data-consistency guarantees to the observed measurements, and deep learning, which provides advanced prior modeling driven by data. Following this idea, we develop multiple algorithms by integrating the classical model-based optimization and modern deep learning to enable efficient and reliable imaging. We demonstrate the performance of our algorithms by validating their performance on various imaging applications and providing rigorous theoretical analysis.

The dissertation evaluates and extends three general frameworks, plug-and-play priors (PnP), regularized …


Development Of A Reverse Engineered, Parameterized, And Structurally Validated Computational Model To Identify Design Parameters That Influence American Football Faceguard Performance, William Ferriell Aug 2022

Development Of A Reverse Engineered, Parameterized, And Structurally Validated Computational Model To Identify Design Parameters That Influence American Football Faceguard Performance, William Ferriell

All Dissertations

Traumatic brain injury (TBI) continues to have the greatest incidence among athletes participating in American football. The headgear design research community has focused on developing accurate computational and experimental analysis techniques to better assess the ability of headgear technology to attenuate impacts and protect athletes from TBI. Despite efforts to innovate the headgear system, minimal progress has been made to innovate the faceguard. Although the faceguard is not the primary component of the headgear system that contributes to impact attenuation, faceguard performance metrics, such as weight, structural stiffness, and visual field occlusions, have been linked to athlete safety. To improve …


Development Of Software Tools For Efficient And Sustainable Process Development And Improvement, Jake P. Stengel Jun 2022

Development Of Software Tools For Efficient And Sustainable Process Development And Improvement, Jake P. Stengel

Theses and Dissertations

Infrastructure is a key component in the well-being of our society that leads to its growth, development, and productive operations. A well-built infrastructure allows the community to be more competitive and promotes economic advancement. In 2021, the ASCE (American Society of Civil Engineers) ranked the American infrastructure as substandard, with an overall grade of C-. The overall ranking suffers when key infrastructure categories are not maintained according to the needs of the population. Therefore, there is a need to consider alternative methods to improve our infrastructure and make it more sustainable to enhance the overall grade. One of the challenges …


Multi-Device Data Analysis For Fault Localization In Electrical Distribution Grids, Jacob D L Hunte Apr 2022

Multi-Device Data Analysis For Fault Localization In Electrical Distribution Grids, Jacob D L Hunte

Electronic Thesis and Dissertation Repository

The work presented in this dissertation represents work which addresses some of the main challenges of fault localization methods in electrical distribution grids. The methods developed largely assume access to sophisticated data sources that may not be available and that any data sets recorded by devices are synchronized. These issues have created a barrier to the adoption of many solutions by industry. The goal of the research presented in this dissertation is to address these challenges through the development of three elements. These elements are a synchronization protocol, a fault localization technique, and a sensor placement algorithm.

The synchronization protocol …


Pymoocfd - A Multi-Objective Optimization Framework For Cfd, George Martin Cunningham Love Jan 2022

Pymoocfd - A Multi-Objective Optimization Framework For Cfd, George Martin Cunningham Love

Graduate College Dissertations and Theses

Modern computational resource have solidified the use of computer modeling as an integral part of the engineering design process. This is particularly impressive when it comes to high-dimensional models such as computational fluid dynamics (CFD) models. CFD models are now capable of producing results with a level of confidence that would previously have required physical experimentation. Simultaneously, the development of machine learning techniques and algorithms has increased exponentially in recent years. This acceleration is also due to the widespread availability of modern computational resources. Thus far, the cross-over between these fields has been mostly focused on computer models with low …


Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac Jan 2022

Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac

Masters Theses

“Critical experiments are used by nuclear data evaluators and criticality safety engineers to validate nuclear data and computational methods. Many of these experiments are designed to maximize the sensitivity to a certain nuclide-reaction pair in an energy range of interest. Traditionally, a parameter sweep is conducted over a set of experimental variables to find a configuration that is critical and maximally sensitive. As additional variables are added, the total number of configurations increases exponentially and quickly becomes prohibitively computationally expensive to calculate, especially using Monte Carlo methods.

This work presents the development of a particle swarm optimization algorithm to design …


Design, Analysis, And Optimization Of Traffic Engineering For Software Defined Networks, Mohammed Ibrahim Salman Jan 2022

Design, Analysis, And Optimization Of Traffic Engineering For Software Defined Networks, Mohammed Ibrahim Salman

Browse all Theses and Dissertations

Network traffic has been growing exponentially due to the rapid development of applications and communications technologies. Conventional routing protocols, such as Open-Shortest Path First (OSPF), do not provide optimal routing and result in weak network resources. Optimal traffic engineering (TE) is not applicable in practice due to operational constraints such as limited memory on the forwarding devices and routes oscillation. Recently, a new way of centralized management of networks enabled by Software-Defined Networking (SDN) made it easy to apply most traffic engineering ideas in practice. \par Toward creating an applicable traffic engineering system, we created a TE simulator for experimenting …


Energy Planning Model Design For Forecasting The Final Energy Consumption Using Artificial Neural Networks, Haidy Eissa Dec 2021

Energy Planning Model Design For Forecasting The Final Energy Consumption Using Artificial Neural Networks, Haidy Eissa

Theses and Dissertations

“Energy Trilemma” has recently received an increasing concern among policy makers. The trilemma conceptual framework is based on three main dimensions: environmental sustainability, energy equity, and energy security. Energy security reflects a nation’s capability to meet current and future energy demand. Rational energy planning is thus a fundamental aspect to articulate energy policies. The energy system is huge and complex, accordingly in order to guarantee the availability of energy supply, it is necessary to implement strategies on the consumption side. Energy modeling is a tool that helps policy makers and researchers understand the fluctuations in the energy system. Over the …


Pressure Retarded Osmosis: A Potential Technology For Seawater Desalination Energy Recovery And Concentrate Management, Joshua Benjamin Nov 2021

Pressure Retarded Osmosis: A Potential Technology For Seawater Desalination Energy Recovery And Concentrate Management, Joshua Benjamin

USF Tampa Graduate Theses and Dissertations

Currently, a significant challenge with reverse osmosis-based desalination is reducing the energy consumption and environmental impacts of the process. This project analyzed the viability of using pressure-retarded osmosis (PRO) for energy recovery in seawater desalination facilities using brine concentrate (the draw solution) and other water sources (the feed solution) such as wastewater effluent. The primary goal of this project is to decrease the cost and overall energy consumption of seawater desalination through PRO-based energy recovery. Process modeling, statistical and sensitivity analysis, energy and cost analysis, geospatial and GIS analysis, laboratory-scale testing, water quality analysis, SEM-EDS microscopy, computational fluid dynamics (CFD), …


Constructing Frameworks For Task-Optimized Visualizations, Ghulam Jilani Abdul Rahim Quadri Oct 2021

Constructing Frameworks For Task-Optimized Visualizations, Ghulam Jilani Abdul Rahim Quadri

USF Tampa Graduate Theses and Dissertations

Visualization is crucial in today’s data-driven world to augment and enhance human understanding and decision-making. Effective visualizations must support accuracy in visual task performance and expressive data communication. Effective visualization design depends on the visual channels used, chart types, or visual tasks. However, design choices and visual judgment are co-related, and effectiveness is not one-dimensional, leading to a significant need to understand the intersection of these factors to create optimized visualizations. Hence, constructing frameworks that consider both design decisions and the task being performed enables optimizing visualization design to maximize efficacy. This dissertation describes experiments, techniques, and user studies to …


Continuous-Time And Complex Growth Transforms For Analog Computing And Optimization, Oindrila Chatterjee Aug 2021

Continuous-Time And Complex Growth Transforms For Analog Computing And Optimization, Oindrila Chatterjee

McKelvey School of Engineering Theses & Dissertations

Analog computing is a promising and practical candidate for solving complex computational problems involving algebraic and differential equations. At the fundamental level, an analog computing framework can be viewed as a dynamical system that evolves following fundamental physical principles, like energy minimization, to solve a computing task. Additionally, conservation laws, such as conservation of charge, energy, or mass, provide a natural way to couple and constrain spatially separated variables. Taking a cue from these observations, in this dissertation, I have explored a novel dynamical system-based computing framework that exploits naturally occurring analog conservation constraints to solve a variety of optimization …


Optimal Communication Structures For Concurrent Computing, Andrii Berdnikov May 2021

Optimal Communication Structures For Concurrent Computing, Andrii Berdnikov

Doctoral Dissertations

This research focuses on communicative solvers that run concurrently and exchange information to improve performance. This “team of solvers” enables individual algorithms to communicate information regarding their progress and intermediate solutions, and allows them to synchronize memory structures with more “successful” counterparts. The result is that fewer nodes spend computational resources on “struggling” processes. The research is focused on optimization of communication structures that maximize algorithmic efficiency using the theoretical framework of Markov chains. Existing research addressing communication between the cooperative solvers on parallel systems lacks generality: Most studies consider a limited number of communication topologies and strategies, while the …


Optimizing Critical Values And Combining Axes For Multi-Axial Neck Injury Criteria, Ethan J. Gaston Mar 2021

Optimizing Critical Values And Combining Axes For Multi-Axial Neck Injury Criteria, Ethan J. Gaston

Theses and Dissertations

The Air Force employs ejection seats in its high-performance aircraft. While these systems are intended to ensure aircrew safety, the ejection process subjects the aircrew to potentially injurious forces. System validation includes evaluation of forces against a standard which is linked to the probability of injury. The Muti-Axial Neck Injury Criteria (MANIC) was developed to account for forces in all six degrees of freedom. Unfortunately, the MANIC is applied to each of the three linear input directions separately and applies different criterion values for each direction. These three separate criteria create a lack of clarity regarding acceptable neck loading, leading …


Optimizing A Bank Of Kalman Filters For Navigation Integrity, Luis E. Sepulveda Mar 2021

Optimizing A Bank Of Kalman Filters For Navigation Integrity, Luis E. Sepulveda

Theses and Dissertations

Alternative navigation is an area of research which employs a variety of sensor technologies to provide a navigation solution in Global Navigation Satellite System degraded or denied environments. The Autonomy and Navigation Technology Center at the Air Force Institute of Technology has recently developed the Autonomous and Resilient Management of All-source Sensors (ARMAS) navigation framework which utilizes an array of Kalman Filters to provide a navigation solution resilient to sensor failures. The Kalman Filter array size increases exponentially as system sensors and detectable faults are scaled up, which in turn increases the computational power required to run ARMAS in areal-world …


Machine Learning Morphisms: A Framework For Designing And Analyzing Machine Learning Work Ows, Applied To Separability, Error Bounds, And 30-Day Hospital Readmissions, Eric Zenon Cawi Jan 2021

Machine Learning Morphisms: A Framework For Designing And Analyzing Machine Learning Work Ows, Applied To Separability, Error Bounds, And 30-Day Hospital Readmissions, Eric Zenon Cawi

McKelvey School of Engineering Theses & Dissertations

A machine learning workflow is the sequence of tasks necessary to implement a machine learning application, including data collection, preprocessing, feature engineering, exploratory analysis, and model training/selection. In this dissertation we propose the Machine Learning Morphism (MLM) as a mathematical framework to describe the tasks in a workflow. The MLM is a tuple consisting of: Input Space, Output Space, Learning Morphism, Parameter Prior, Empirical Risk Function. This contains the information necessary to learn the parameters of the learning morphism, which represents a workflow task. In chapter 1, we give a short review of typical tasks present in a workflow, as …


Scheduling Allocation And Inventory Replenishment Problems Under Uncertainty: Applications In Managing Electric Vehicle And Drone Battery Swap Stations, Amin Asadi Jan 2021

Scheduling Allocation And Inventory Replenishment Problems Under Uncertainty: Applications In Managing Electric Vehicle And Drone Battery Swap Stations, Amin Asadi

Graduate Theses and Dissertations

In this dissertation, motivated by electric vehicle (EV) and drone application growth, we propose novel optimization problems and solution techniques for managing the operations at EV and drone battery swap stations. In Chapter 2, we introduce a novel class of stochastic scheduling allocation and inventory replenishment problems (SAIRP), which determines the recharging, discharging, and replacement decisions at a swap station over time to maximize the expected total profit. We use Markov Decision Process (MDP) to model SAIRPs facing uncertain demands, varying costs, and battery degradation. Considering battery degradation is crucial as it relaxes the assumption that charging/discharging batteries do not …


Target Control Of Networked Systems, Isaac S. Klickstein Apr 2020

Target Control Of Networked Systems, Isaac S. Klickstein

Mechanical Engineering ETDs

The control of complex networks is an emerging field yet it has already garnered interest from across the scientific disciplines, from robotics to sociology. It has quickly been noticed that many of the classical techniques from controls engineering, while applicable, are not as illuminating as they were for single systems of relatively small dimension. Instead, properties borrowed from graph theory provide equivalent but more practical conditions to guarantee controllability, reachability, observability, and other typical properties of interest to the controls engineer when dealing with large networked systems. This manuscript covers three topics investigated in detail by the author: (i) the …


Optimizing Cluster Sets For The Scan Statistic Using Local Search, James Shulgan Jan 2020

Optimizing Cluster Sets For The Scan Statistic Using Local Search, James Shulgan

Graduate Research Theses & Dissertations

In recent years, scattering sensors to produce wireless sensor networks (WSN) has been proposed for detecting localized events in large areas. Because sensor measurements are noisy, the WSN needs to use statistical methods such as the scan statistic. The scan statistic groups measurements into various clusters, computes a cluster statistic for each cluster, and decides that an event has happened if any of the statistics exceeds a threshold. Previous researchers have investigated the performance of the scan statistic to detect events; however, little attention was given to the optimization of which clusters the scan statistic should use. Using the scan …


Hybrid Electric Vehicle Energy Management Strategy With Consideration Of Battery Aging, Bin Zhou Jan 2020

Hybrid Electric Vehicle Energy Management Strategy With Consideration Of Battery Aging, Bin Zhou

Dissertations, Master's Theses and Master's Reports

The equivalent consumption minimization strategy (ECMS) is a well-known energy management strategy for Hybrid Electric Vehicles (HEV). ECMS is very computationally efficient since it yields an instantaneous optimal control. ECMS has been shown to minimize fuel consumption under certain conditions. But, minimizing the fuel consumption often leads to excessive battery damage. The objective of this dissertation is to develop a real-time implementable optimal energy management strategy which improves both the fuel economy and battery aging for Hybrid Electric Vehicles by using ECMS. This work introduces a new optimal control problem where the cost function includes terms for both fuel consumption …


Computational Model For Neural Architecture Search, Ram Deepak Gottapu Jan 2020

Computational Model For Neural Architecture Search, Ram Deepak Gottapu

Doctoral Dissertations

"A long-standing goal in Deep Learning (DL) research is to design efficient architectures for a given dataset that are both accurate and computationally inexpensive. At present, designing deep learning architectures for a real-world application requires both human expertise and considerable effort as they are either handcrafted by careful experimentation or modified from a handful of existing models. This method is inefficient as the process of architecture design is highly time-consuming and computationally expensive.

The research presents an approach to automate the process of deep learning architecture design through a modeling procedure. In particular, it first introduces a framework that treats …


Optimal Sampling Paths For Autonomous Vehicles In Uncertain Ocean Flows, Andrew J. De Stefan Aug 2019

Optimal Sampling Paths For Autonomous Vehicles In Uncertain Ocean Flows, Andrew J. De Stefan

Dissertations

Despite an extensive history of oceanic observation, researchers have only begun to build a complete picture of oceanic currents. Sparsity of instrumentation has created the need to maximize the information extracted from every source of data in building this picture. Within the last few decades, autonomous vehicles, or AVs, have been employed as tools to aid in this research initiative. Unmanned and self-propelled, AVs are capable of spending weeks, if not months, exploring and monitoring the oceans. However, the quality of data acquired by these vehicles is highly dependent on the paths along which they collect their observational data. The …