Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Towards Explainable Ai Using Attribution Methods And Image Segmentation, Garrett J. Rocks Jan 2023

Towards Explainable Ai Using Attribution Methods And Image Segmentation, Garrett J. Rocks

Honors Undergraduate Theses

With artificial intelligence (AI) becoming ubiquitous in a broad range of application domains, the opacity of deep learning models remains an obstacle to adaptation within safety-critical systems. Explainable AI (XAI) aims to build trust in AI systems by revealing important inner mechanisms of what has been treated as a black box by human users. This thesis specifically aims to improve the transparency and trustworthiness of deep learning algorithms by combining attribution methods with image segmentation methods. This thesis has the potential to improve the trust and acceptance of AI systems, leading to more responsible and ethical AI applications. An exploratory …


Biomarker Identification For Breast Cancer Types Using Feature Selection And Explainable Ai Methods, David E. La Rosa Giraud Jan 2023

Biomarker Identification For Breast Cancer Types Using Feature Selection And Explainable Ai Methods, David E. La Rosa Giraud

Honors Undergraduate Theses

This paper investigates the impact the LASSO, mRMR, SHAP, and Reinforcement Feature Selection techniques on random forest models for the breast cancer subtypes markers ER, HER2, PR, and TN as well as identifying a small subset of biomarkers that could potentially cause the disease and explain them using explainable AI techniques. This is important because in areas such as healthcare understanding why the model makes a specific decision is important it is a diagnostic of an individual which requires reliable AI. Another contribution is using feature selection methods to identify a small subset of biomarkers capable of predicting if a …


Reviving Mozart With Intelligence Duplication, Jacob E. Galajda Jan 2021

Reviving Mozart With Intelligence Duplication, Jacob E. Galajda

Honors Undergraduate Theses

Deep learning has been applied to many problems that are too complex to solve through an algorithm. Most of these problems have not required the specific expertise of a certain individual or group; most applied networks learn information that is shared across humans intuitively. Deep learning has encountered very few problems that would require the expertise of a certain individual or group to solve, and there has yet to be a defined class of networks capable of achieving this. Such networks could duplicate the intelligence of a person relative to a specific task, such as their writing style or music …