Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Functional Mixed Data Clustering With Fourier Basis Smoothing, Ishmael Amartey Dec 2021

Functional Mixed Data Clustering With Fourier Basis Smoothing, Ishmael Amartey

Electronic Theses and Dissertations

Clustering is an important analytical technique that has proven to affect human life positively through its application in cancer research, market segmentation, city planning etc. In this time of growing technological systems, mixed data has seen another face of longitudinal, directional and functional attributes which is worth paying attention to and analyzing. Previous research works on clustering relied largely on the inverse weight technique and B-spline in smoothing data and assessing the performance of various clustering algorithms. In 1971, Gower proposed a method of clustering for mixed variable types which has been extended to include functional and directional variables by …


Applying Deep Learning To The Ice Cream Vendor Problem: An Extension Of The Newsvendor Problem, Gaffar Solihu Aug 2021

Applying Deep Learning To The Ice Cream Vendor Problem: An Extension Of The Newsvendor Problem, Gaffar Solihu

Electronic Theses and Dissertations

The Newsvendor problem is a classical supply chain problem used to develop strategies for inventory optimization. The goal of the newsvendor problem is to predict the optimal order quantity of a product to meet an uncertain demand in the future, given that the demand distribution itself is known. The Ice Cream Vendor Problem extends the classical newsvendor problem to an uncertain demand with unknown distribution, albeit a distribution that is known to depend on exogenous features. The goal is thus to estimate the order quantity that minimizes the total cost when demand does not follow any known statistical distribution. The …


Performance Comparison Of Imputation Methods For Mixed Data Missing At Random With Small And Large Sample Data Set With Different Variability, Kyei Afari Aug 2021

Performance Comparison Of Imputation Methods For Mixed Data Missing At Random With Small And Large Sample Data Set With Different Variability, Kyei Afari

Electronic Theses and Dissertations

One of the concerns in the field of statistics is the presence of missing data, which leads to bias in parameter estimation and inaccurate results. However, the multiple imputation procedure is a remedy for handling missing data. This study looked at the best multiple imputation methods used to handle mixed variable datasets with different sample sizes and variability along with different levels of missingness. The study employed the predictive mean matching, classification and regression trees, and the random forest imputation methods. For each dataset, the multiple regression parameter estimates for the complete datasets were compared to the multiple regression parameter …


Performance Comparison Of Multiple Imputation Methods For Quantitative Variables For Small And Large Data With Differing Variability, Vincent Onyame May 2021

Performance Comparison Of Multiple Imputation Methods For Quantitative Variables For Small And Large Data With Differing Variability, Vincent Onyame

Electronic Theses and Dissertations

Missing data continues to be one of the main problems in data analysis as it reduces sample representativeness and consequently, causes biased estimates. Multiple imputation methods have been established as an effective method of handling missing data. In this study, we examined multiple imputation methods for quantitative variables on twelve data sets with varied sizes and variability that were pseudo generated from an original data. The multiple imputation methods examined are the predictive mean matching, Bayesian linear regression and linear regression, non-Bayesian in the MICE (Multiple Imputation Chain Equation) package in the statistical software, R. The parameter estimates generated from …


Zeta Function Regularization And Its Relationship To Number Theory, Stephen Wang May 2021

Zeta Function Regularization And Its Relationship To Number Theory, Stephen Wang

Electronic Theses and Dissertations

While the "path integral" formulation of quantum mechanics is both highly intuitive and far reaching, the path integrals themselves often fail to converge in the usual sense. Richard Feynman developed regularization as a solution, such that regularized path integrals could be calculated and analyzed within a strictly physics context. Over the past 50 years, mathematicians and physicists have retroactively introduced schemes for achieving mathematical rigor in the study and application of regularized path integrals. One such scheme was introduced in 2007 by the mathematicians Klaus Kirsten and Paul Loya. In this thesis, we reproduce the Kirsten and Loya approach to …