Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Chemistry

Self-assembly

Institution
Publication Year
Publication

Articles 1 - 30 of 53

Full-Text Articles in Physical Sciences and Mathematics

Poly(Ionic Liquid)S For Magnetic, Ionic, And Electrical Stimuli-Responsive Applications, Kayla Ann Foley Aug 2023

Poly(Ionic Liquid)S For Magnetic, Ionic, And Electrical Stimuli-Responsive Applications, Kayla Ann Foley

Graduate Theses and Dissertations

Poly(ionic liquid)s (PILs) are a fascinating subclass of strong polyelectrolytes formed from polymerizable ionic liquids. As a result of their unique properties and counterion exchangeability, PILs can exhibit conformation structure or material property changes in response to external stimuli such as changes in pH/ionic environment, magnetic fields, and electric potentials. In Chapter 1, a comprehensive review of PILs design as well as their stimuli-responsive behavior is provided. Additional motivation for each dissertation chapter is also discussed. In Chapter 2, magnetically responsive PILs (MPILs) are developed from complexing paramagnetic salts with a random PIL copolymer containing a metal-coordinating co-monomer, acrylamide. A …


Visible Light Photocatalysis Of Organic Reactions In H2o, Sankarsan Biswas Sep 2022

Visible Light Photocatalysis Of Organic Reactions In H2o, Sankarsan Biswas

Dissertations, Theses, and Capstone Projects

Visible-light photocatalysis in H2O provides an attractive, green alternative to typical organic synthesis, which often involves toxic solvents, metal catalysts, and large energy demands. Hence, there is a growing need for an efficient photocatalytic methods that use either aqueous media as a solvent or can proceed solvent-free. However, commercially available photocatalysts do not work well for aqueous photocatalysis. Supramolecular systems in particular have been explored recently to address these issues associated with aqueous photocatalysis. Chapter 1 will review recent advances in aqueous supramolecular photocatalysis with examples of different supramolecular systems and how they have addressed some of the …


Development Of Stimuli-Responsive Liposomes For Drug Delivery Applications, Jinchao Lou May 2022

Development Of Stimuli-Responsive Liposomes For Drug Delivery Applications, Jinchao Lou

Doctoral Dissertations

Liposomes are spherical nano-assemblies that are proven to be effective drug delivery vehicles. Due to their unique bilayer structures, they are able to encapsulate both hydrophilic and hydrophobic drugs in their aqueous inner core and membrane bilayers, respectively. While liposomal delivery platforms exbibit numerous advantages, the therapeutic efficacy of these platforms would be enhanced by developing triggered release strategies such that one can tune the timing and location of the cargo release in a controlled manner. In this dissertation, we mainly present the development of stimuli-responsive liposomes targeting different disease-associated metabolites utilizing rationally designed synthetic lipid switches.

In Chapter 2, …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Investigation Of Dna Hybridization In Localized Systems In Close Proximity, Ashley M. Sewsankar Jan 2022

Investigation Of Dna Hybridization In Localized Systems In Close Proximity, Ashley M. Sewsankar

Honors Undergraduate Theses

Hybridization of two or more DNA or RNA strands is well documented for the process taking place with all strands free in solution or when one strand is immobilized on a substrate. This study contributes to the investigation of the hybridization process when two single DNA strands (ssDNA) are in close proximity. We took advantage of an X sensor in which hybridization of four DNA strands enables the formation of a DNA four-way junction (crossover or X) structure. We immobilized multiple layers of crossover structures to study its hybridization being triggered by short ssDNA coming from solution and further investigate …


Synthesis And Characterization Of 4,6-Protected Glucosamine Derivatives And Branched Glycoconjugates, Jonathan Bietsch Dec 2021

Synthesis And Characterization Of 4,6-Protected Glucosamine Derivatives And Branched Glycoconjugates, Jonathan Bietsch

Chemistry & Biochemistry Theses & Dissertations

Low molecular weight gelators (LMWGs) are small molecules that self-assemble in appropriate solvents to form three dimensional networks that immobilize the solvent, creating a supramolecular gel. The self-assembly of LMWGs occurs through non-covalent interactions such as hydrogen bonding, aromatic interactions, donor-acceptor interactions, Van der Waals interactions, hydrophobic forces, halogen bonding, etc. Due to self-assembly occurring through reversible non-covalent interactions, supramolecular gels can undergo a gel to solution transformation. Because of this, these materials can be sensitive to external stimuli such as temperature changes, pH changes, and other stimuli that effect non-covalent interactions. This makes the synthesis of LMWG’s an appealing …


From Persistent Radicals To Conductivity: A Structure Property Investigation In A Series Of Urea-Tethered Halogenated Triphenylamines, Muhammad Saddam Hossain Oct 2021

From Persistent Radicals To Conductivity: A Structure Property Investigation In A Series Of Urea-Tethered Halogenated Triphenylamines, Muhammad Saddam Hossain

Theses and Dissertations

Triphenylamines (TPAs) are known to form persistent organic radicals either by chemical, electrochemical or photoinduced oxidation. Typically, fully para-substituted TPAs form stable radical cations while the radical cations in partially substituted systems quickly degrade. Herein, we study the effects of solid-state organization on a series of urea tethered halogenated TPAs 1 (X = H, Cl, Br, I) and compare their radical cation formation and persistence after UV-irradiation. These halogenated urea tethered TPAs were examined by single-crystal X-ray diffraction where their assembly was guided by threecentered urea hydrogen bonding interaction. As expected, all compounds form photogenerated radical cations in solution, but …


Computational Investigation Of Nanoparticle Immersion And Selfassembly, Tara Allison Tyler Nitka Aug 2021

Computational Investigation Of Nanoparticle Immersion And Selfassembly, Tara Allison Tyler Nitka

Open Access Theses & Dissertations

Both neutral and charged nanoparticles with a variety of compositions, shapes, and sizes have beenpreviously prepared. These nanoparticles have been demonstrated to self-assemble into a variety of superlattices and binary superlattices both in bulk solution and at surfaces of solutions, and the structures formed by self-assembly have been shown to depend on nanoparticle chemistry and charge as well as on whether assembly takes place at a surface or in bulk. Furthermore, the prepared isolated and self-assembled nanoparticles have a number of biomedical, nanotechnology, and industrial applications. In this Dissertation, I present my research on three general topics. First, I will …


Stimuli Responsive Dye-Containing Peg-Pla Block Copolymer Micelles And Computationally Assisted Design Of A Stapled Peptide Bundle, Tyler L. Odom Aug 2021

Stimuli Responsive Dye-Containing Peg-Pla Block Copolymer Micelles And Computationally Assisted Design Of A Stapled Peptide Bundle, Tyler L. Odom

MSU Graduate Theses

In this thesis, I report the preparation and characterization of dye-containing PEG-b-PLA block copolymer micelles and the computational design of a novel coiled-coil peptide bundle. The PEG-b-PLA micelles encapsulate hydrophobic molecules into their core and have strong potential as nanocontainers or delivery vesicles. In theory, these internalized molecules can be released upon exposure to mechanical forces that disrupt the micellar structures. This force-responsive nature is one of the inherent properties of micellar systems. However, there is a stark lack of research that utilize this property in applications. Along those lines, I have studied the behavior of …


Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu Nov 2020

Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu

LSU Doctoral Dissertations

The ability to explore and predict metastable structures of hybrid self-assemblies is of central importance for the next generation of advanced materials with novel properties. As compared to their thermodynamically stable forms, the kinetically stabilized materials show improved functionality potentially over their stable counterparts. The self-assembly processes usually originate from weak intermolecular interactions, involving a dynamic competition between attractive and repulsive interactions. These weak forces, including van der Waals (vdW), electrostatic interaction and the hydrogen bonding (H-bonding), can be tuned by external stimuli, e.g., confinement, temperature and ionization, and consequently driving hybrid materials into different configurations. It is challenging to …


Modulating Nanoparticle-Protein Interactions Through Covalent Or Noncovalent Approach For Biomedical Applications, Jingjing Gao Mar 2020

Modulating Nanoparticle-Protein Interactions Through Covalent Or Noncovalent Approach For Biomedical Applications, Jingjing Gao

Doctoral Dissertations

Discoveries at the interface of chemistry, biology, and materials science have emerged as a powerful route to impact life science in this century. My research in the Thayumanavan group is focused on problems at this interface. A common theme of all the six projects is the use of modern synthetic organic chemistry to build interesting, novel macromolecules which are chemically rich, to study the molecular self-assembly behavior in solution and then translate to solve problems in the biomedical area. By addressing the design challenge to prepare novel amphiphiles with desired functional groups, controlled molecular weight and the ability to respond …


Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …


Construction Of G-Quadruplexes Via Self-Assembly: Enhanced Stability And Unique Properties, Ying He Nov 2019

Construction Of G-Quadruplexes Via Self-Assembly: Enhanced Stability And Unique Properties, Ying He

USF Tampa Graduate Theses and Dissertations

This dissertation mainly contains three parts: 1) The construction of well-defined G8-octamers through the monomer conformational design. 2) The construction of cross-layer interactions in the G8-octamer for enhanced stability in H-bond competitive solvents. 3) Design and synthesis of 8-triazole guanosine with photoluminescent properties.

Through the structural conformational design, we have developed a new class of guanosine derivatives with modification on guanine (8-aryl) and ribose (2’,3’-isopropylidene). This unique design has led to the formation of the first discrete G8-octamer with structure characterized by NMR, MS and single crystal X-ray diffraction. The selectivity between monovalent (K+) and divalent cat-ions (Ba2+ and Sr2+) …


Probing The Gelation Phenomena In Molecular And Seed-Based Gels, Malick Samateh Sep 2019

Probing The Gelation Phenomena In Molecular And Seed-Based Gels, Malick Samateh

Dissertations, Theses, and Capstone Projects

The interest in molecular gels has been gaining momentum as evident from being developed for a broad spectrum of applications. This impetus stems from several reasons that include: (i) molecular gels are highly stimuli responsive as they easily respond to thermodynamic changes, disintegrating into well-defined chemicals/building blocks because of the purely physical (in contrast to chemically cross-linked) nature of the interactions holding their 3D networks together; (ii) the sheer abundance of simple small molecules to choose starting materials from and the vast potential of tunability of the low molecular weight gelators (LMWGs) make the LMWGs and the molecular gels highly …


Reactive And Stimuli-Responsive Sulfonium-Based Polymer Zwitterions, Cristiam Santa Chalarca Jul 2019

Reactive And Stimuli-Responsive Sulfonium-Based Polymer Zwitterions, Cristiam Santa Chalarca

Doctoral Dissertations

This dissertation describes the synthesis and characterization of novel monomers and (co)polymer zwitterions that incorporate trialkylsulfonium cations. The novel materials presented herein constitute a unique type of polymer zwitterions that exhibit salt- and temperature-dependent water solubility as well as inherent reactivity. The behavior of these polymers in aqueous solutions, as nanostructures, and at liquid-liquid interfaces was studied; in all cases, the inherent reactivity of the polymers was harnessed towards the fabrication of novel polymers and soft materials. Following an introductory chapter, Chapter 2 describes the synthesis of sulfonium sulfonate monomers and polymer zwitterions. Both styrenic and methacrylic monomers were synthesized …


Peptide Mediated Co-Assembly Of Porphyrin: Towards Sustainable Biomaterials For Light Harvesting And Catalysis, Wsm Nadeesha K. Wijerathne May 2019

Peptide Mediated Co-Assembly Of Porphyrin: Towards Sustainable Biomaterials For Light Harvesting And Catalysis, Wsm Nadeesha K. Wijerathne

Dissertations, Theses, and Capstone Projects

The diverse molecular functions of naturally occurring biomaterials designed from proteins are fundamentally based on a set of conserved building blocks, namely the 20 gene coded amino acids. The supramolecular structures and functions of proteins dictates by the self-assembly, where the complexity of proteins arise from a large number of amino acids. Generation of biomimetic systems that resemble the structures and functions of proteins is of great interest yet challenging due to the tremendous complexity of the natural systems. It is important to investigate alternative strategies to design much simpler systems that exhibit the same or similar function as proteins. …


Synthesis And Characterization Of Fluorescent Nanojars, Vageesha Warnajith Liyana Gunawardana Jun 2018

Synthesis And Characterization Of Fluorescent Nanojars, Vageesha Warnajith Liyana Gunawardana

Masters Theses

Self-assembly is a powerful tool utilized by synthetic chemists to create large, intricate structures for a variety of applications such as drug delivery, adaptable materials and electronics. In contrast to stepwise synthesis, this process allows the formation of intricate molecular architectures starting from synthetically rudimentary building blocks. Nanojars are class of self-assembling, cyclic copper(II) pyrazolate coordination compounds that encapsulate oxoanions with negative two or three charge. The strong anion binding characteristics of nanojars have potential towards developing novel tools for detecting biologically and environmentally relevant anions such as carbonate, sulfate and phosphate.

This work addresses the design and synthesis of …


Study Of Self-Assembly And Stimuli Responsive Behavior In Polymeric And Dendritic Amphiphiles, Poornima Rangadurai Mar 2018

Study Of Self-Assembly And Stimuli Responsive Behavior In Polymeric And Dendritic Amphiphiles, Poornima Rangadurai

Doctoral Dissertations

Natural processes are intricately detailed and able to convert molecular-level events into macroscopic or visually observable properties. This is made possible through multiple interactions at the molecular level, signaling due to covalent and non-covalent interactions, and supramolecular networks that rely on dynamic, non-equilibrium structures. Detailing processes in this manner is the current quest for material science research and designing materials for this purpose is usually via a key process known as self-assembly. Self-assembly is a process in which a material with varied components organizes itself into a particular pattern due to various specific inter and intra molecular interactions. By understanding …


The Effect Of Oxidation, Thionation, And Dimerization On The Self-Assembly And Photophysical Properties Of Novel Discotic Materials, Katie M. Psutka Jan 2018

The Effect Of Oxidation, Thionation, And Dimerization On The Self-Assembly And Photophysical Properties Of Novel Discotic Materials, Katie M. Psutka

Theses and Dissertations (Comprehensive)

This thesis aims to increase understanding of the relationship between molecular structure and liquid crystalline temperature range by exploring the effects of oxidation, thionation, and dimerization on the self-assembly and properties of novel discotic materials. First, two alkoxy-substituted dibenzanthracenequinones were prepared by oxidation of the corresponding dibenzanthracenes. The quinone induced a liquid crystalline phase in the hexaalkoxy dibenzanthracene derivative, but not in the tetralkoxy derivative. However, both of the resulting materials were un-reactive to any further synthetic modifications that could be used to improve their properties. In comparison, two heteroaromatic dithienoanthracenedicarboximides were successfully prepared, although the addition of the thiophene …


Synthesis And Characterization Of Glycolipids, Glycoclusters And Glycomacrocycles, Anji Chen Jan 2018

Synthesis And Characterization Of Glycolipids, Glycoclusters And Glycomacrocycles, Anji Chen

Chemistry & Biochemistry Theses & Dissertations

Low molecular-weight gelators (LMWGs) are a fascinating and interesting class of compounds that can self-assemble and form supramolecular structures in appropriate solvents. The gelators form fibrous networks which entrap the solvent and result in a supramolecular gel. Carbohydrate-derived LMWGs are especially useful since they are more likely to be biocompatible and biodegradable. Dendritic gelators are branch-shaped molecules with precise molecular weight that are between small molecules and polymer gelators. Glycoclusters with sugar moieties at the periphery of the molecules are important classes of bioactive compounds due to the multivalency effect. Lower generation glycoclusters are relatively small branched systems that have …


Self-Assembly Mechanisms Of Organosilanes And Porphyrins Investigated With Scanning Probe Microscopy, Phillip Charles Chambers Ii Nov 2017

Self-Assembly Mechanisms Of Organosilanes And Porphyrins Investigated With Scanning Probe Microscopy, Phillip Charles Chambers Ii

LSU Doctoral Dissertations

This dissertation details the development of new fabrication strategies for the preparation of spatially selective surfaces by combining techniques of particle lithography and scanning probe microscopy (SPM). This combination of lithography and nanoscale surface characterization was applied to study the mechanisms of molecular level surface-assembly of organosilanes and porphyrin on surfaces of Si(111). Particle lithography was used to investigate the surface assembly of 4-chloromethylphenyltrichlorosilane (CMPS) within exposed sites of nanoholes in selected solvents and at selected temperatures to gain insight into the details of self-polymerization. Nanopillars of CMPS were generated under selected conditions of solvent and temperature and characterized with …


Protein-Nanoparticle Co-Engineering: Self-Assembly, Intracellular Protein Delivery, And Crispr/Cas9-Based Gene Editing, Rubul Mout Nov 2017

Protein-Nanoparticle Co-Engineering: Self-Assembly, Intracellular Protein Delivery, And Crispr/Cas9-Based Gene Editing, Rubul Mout

Doctoral Dissertations

Direct cytoplasmic delivery of gene editing nucleases such CRISPR/Cas9 systems and therapeutic proteins provides enormous opportunities in curing human genetic diseases, and assist research in basic cell biology. One approach to attain such a goal is through engineering nanotechnological tools to mimic naturally existing intra- and extracellular protein delivery/transport systems. Nature builds transport systems for proteins and other biomolecules through evolution-derived sophisticated molecular engineering. Inspired by such natural assemblies, I employed molecular engineering approaches to fabricate self-assembled nanostructures to use as intracellular protein delivery tools. Briefly, proteins and gold nanoparticles were co-engineered to carry complementary electrostatic recognition elements. When these …


Impact Of Macromolecular Design On Self-Assembly Properties Of Block Copolymers: Effect Of Tunable Chain Flexibility And Chain Topology, Kamlesh Ramesh Bornani May 2017

Impact Of Macromolecular Design On Self-Assembly Properties Of Block Copolymers: Effect Of Tunable Chain Flexibility And Chain Topology, Kamlesh Ramesh Bornani

Doctoral Dissertations

The generation of well-ordered complex structures from constituent block copolymeric building blocks by the spontaneous process of self-assembly is useful in various technologies. The well-defined 3D structures are dictated by complex energetic interplays and their shape is controllable by both preparative conditions and macromolecular design. This dissertation work aims at exploring the effect of chain flexibility and chain topology design changes on phase behavior of block copolymers in solution. Further, we exploit the tunable flexibility of the semiflexible polymers in studying dispersion and controlling macroscale thermal properties in polymer nanocomposites.

The experimental design is based on two model systems: The …


Metal-Promoted Self-Assembly Of Collagen Mimetic Peptides Into Biofunctional Scaffolds For Stem Cell Delivery With The Aim Of Tissue Regeneration, Kevin Strauss Aug 2016

Metal-Promoted Self-Assembly Of Collagen Mimetic Peptides Into Biofunctional Scaffolds For Stem Cell Delivery With The Aim Of Tissue Regeneration, Kevin Strauss

Open Access Theses

Collagen is a strong, sturdy, but malleable, protein found abundantly in the extracellular matrix. Consequently, it has become an invaluable biomaterial for use in regenerative medicine. However, natural collagen poses difficulties when it comes to customization and structural control, as well as the risk of infectious prions from animal sources. Our approach utilizes shorter, synthetic collagen mimetic peptide sequences. These peptides retain the incredible triple helical stability of natural collagen but can be modified with versatile metal-binding ligands. In the presence of an appropriate metal ion, the peptides self-assemble into diverse, three-dimensional morphologies. The peptide NCoH, functionalized with N-terminal NTA …


Synthesis, Morphological Control, Dispersion Stabilization And In Situ Self-Assembly Of Noble Metal Nanostructures Using Multidentate Resorcinarene Surfactants, Sangbum Han Apr 2016

Synthesis, Morphological Control, Dispersion Stabilization And In Situ Self-Assembly Of Noble Metal Nanostructures Using Multidentate Resorcinarene Surfactants, Sangbum Han

Chemistry & Biochemistry Theses & Dissertations

In this dissertation, a detailed investigation on the influence of various macrocyclic resorcinarene surfactants in determining the morphology, stabilization and self-assembly of mono- and bi- metallic nanoparticles was undertaken. Chapter 2 describes the influence of resorcinarene surfactants functionalized with amine- and thiol- headgroups in determining the morphology of monometallic Pt nanoparticles synthesized via the Brust-Schiffrin reaction. We found that while resorcinarene benzylthiol can lead to the formation of highly branched Pt nanostructures, resorcinarene amine can lead to the formation of anisotropic crystalline Pt nanoparticles. Further, we have evaluated the influence of resorcinarene ligands in determining the catalytic activity of these …


Stimuli Responsive Polymer Self-Assembly And Disassembly, Jiaming Zhuang Mar 2016

Stimuli Responsive Polymer Self-Assembly And Disassembly, Jiaming Zhuang

Doctoral Dissertations

Stimuli responsive polymer assemblies have been long investigated for drug application due to their flexibility for surface functionalization to achieve desired interfacial property and capability of acting as a host for payloads encapsulation. These interfacial and host-guest properties are very critical and need to be customized really depending on nature of cargos and specific delivery application. More importantly, these properties are always desired to be adaptable in different environments. For instance, adjustable interfacial property can facilitate the carrier to overcome a variety of different barriers before it reach the target while changeable host-guest property allows to selectively releasing the payload …


Supramolecular Strategies For The Generation Of Nanoparticle Assemblies And Biomolecular Thin Films, Bradley P. Duncan Mar 2016

Supramolecular Strategies For The Generation Of Nanoparticle Assemblies And Biomolecular Thin Films, Bradley P. Duncan

Doctoral Dissertations

The conceptual framework of supramolecular chemistry elucidates a powerful set of strategies for chemists to generate functional nanomaterials based on intermolecular forces. My research focused on tuning the molecular interactions of nanoscale components to create larger structures with enhanced properties. In one approach, I developed and optimized an additive-free, nanoimprint lithography-based methodology to generate stable thin films from a variety of proteins. The generalized process retains intrinsic properties of the protein as demonstrated by selective cellular adhesion. The heat and pressure of the nanoimprinting process induces slight structural reorganization of the peptide side chains to yield highly stable films held …


Size And Chemistry Selective Membranes From Block Polymer Templates, Ryan A. Mulvenna Jan 2016

Size And Chemistry Selective Membranes From Block Polymer Templates, Ryan A. Mulvenna

Open Access Dissertations

The use of block polymers continues to gain attention with their myriad applications in industry for advanced applications in biology, medicine, electronics, and separations. The ability of block polymers to self assemble into ordered states on the nanometer level makes these materials suitable for applications that mandate structural order on this scale. By tuning the chemistry of these block domains, we may explore their utilization for advanced separations.

In this dossier, we detail the efforts into the controlled radical polymerization of polyisoprene-b-polystyrene-b-poly( N,N-dimethylacrylamide) (PI-PS-PDMA) via. a facile reversible addition-fragmentation chain transfer (RAFT) mechanism. For this …


Scanning Probe Investigations Of Multidentate Thiol And Spatially Confined Porphyrin Nanoassemblies Using Nanoscale Lithography, Xianglin Zhai Zhai Jan 2016

Scanning Probe Investigations Of Multidentate Thiol And Spatially Confined Porphyrin Nanoassemblies Using Nanoscale Lithography, Xianglin Zhai Zhai

LSU Doctoral Dissertations

Approaches to prepare spatially selective surfaces were developed in this dissertation for constructing nanopatterns of organic thin film materials. Nanoscale surface patterns were prepared using immersion particle lithography and scanning probe lithography combined with organothiol chemistry. Organic thin films and nanomaterials can be patterned with tunable periodicities and designed shapes by selecting the diameter of mesospheres used as surface masks or scanning probe lithography, respectively. The surface platforms of well-defined nanopatterns are ideal for high resolution investigations using scanning probe microscopy (SPM). Local measurements of surface properties and conductive properties combined with nanolithography were accomplished at the molecular level. Sample …


Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis Dec 2015

Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis

Doctoral Dissertations

The spontaneous generation of complex structures from polymeric building blocks provides a simple yet effective route to create useful soft matter structures having potential application in a variety of nanotechnologies. The topology, chemical structure, block composition, and sequence of the constituent building blocks of polymers are tunable through synthetic chemistry. This tunability offers attractive opportunities to generate complex, yet well-defined structures with control over the geometry, packing symmetry, and microdomain structure. This thesis work involves the study of the self-assembly behaviors of architecturally complex amphiphilic block copolymers (ABCs). ABCs are composed of two or more chemically distinct blocks that are …