Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Chemistry

DNA

Institution
Publication Year
Publication

Articles 1 - 30 of 62

Full-Text Articles in Physical Sciences and Mathematics

Mechanisms Of Formation Of Novel Guanine-Guanine Cross-Links As Major End Products During One-Electron Oxidation Of Guanine Derivatives, Evan Dunn May 2023

Mechanisms Of Formation Of Novel Guanine-Guanine Cross-Links As Major End Products During One-Electron Oxidation Of Guanine Derivatives, Evan Dunn

Undergraduate Honors Theses

Guanine (G), as the most oxidizable base in DNA, is the major focus of studies of oxidation damage to DNA. The present thesis reports the first detailed characterization of G dimerization products potentially resulting from recombination of neutral G• radicals. Previous research has discovered a novel type of products of G• dimerization, D1 and D2, formed from one-electron oxidation of G derivatives. However, the mechanism of this dimerization remains elusive. While there appears to be a tautomeric equilibrium between two forms of G•, G(N1-H)• or G(N2-H)•, it remains unclear which intermediate participates in the formation of …


Impact Of Sample Conditions On Dna Phosphodiester Backbone Bi/Bii Conformational Equilibrium Dynamics, Autumn C. Pilarski Jan 2023

Impact Of Sample Conditions On Dna Phosphodiester Backbone Bi/Bii Conformational Equilibrium Dynamics, Autumn C. Pilarski

MSU Graduate Theses

DNA damage, such as single base lesions and mismatches, is highly prevalent within cells. If these DNA damage events are not repaired, they could lead to mutations and thus disease and cancer. Intricate repair mechanisms are in place to fix these damage events, one such being Base Excision Repair (BER) and associated enzyme: Thymine DNA Glycosylase (TDG). The first step of this repair process, recognition of the lesion by TDG, is not well understood. The following thesis presents results to better understand the fundamental biophysical question of how a DNA lesion within a mismatch context is recognized in a million …


Functional Characterization Of The Newly Discovered Type V Crispr-Cas Protein Cas12a2, Dylan J. Keiser Dec 2022

Functional Characterization Of The Newly Discovered Type V Crispr-Cas Protein Cas12a2, Dylan J. Keiser

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Similarly to people, bacteria are under the treat of infection by viruses. To circumvent these threats, bacteria evolve complex immune systems. Our understanding of some of these immune systems has led to many advancements in the field of Biotechnology including tools that made expressing proteins for study in a lab easier, tools that revolutionized the feasibility of gene editing, and tools that could change the way we think about viral diagnostics and cancer therapeutics. A certain type of immune system that bacteria use to fight virus is called a CRISPR system. Presented here is work to understand the function of …


Investigating The Effects Of Ionic Liquids On Dna Gquadruplex And Protein Structure Using Molecular Dynamics Simulations, Nicholas J. Paradis Nov 2022

Investigating The Effects Of Ionic Liquids On Dna Gquadruplex And Protein Structure Using Molecular Dynamics Simulations, Nicholas J. Paradis

Theses and Dissertations

Nucleic acids and proteins have huge implications in biomedicine and bioengineering, however their storage instability limits their applicability and current storage protocols are expensive and globally-inaccessible. Finding an alternative biocompatible media to store nucleic acids and proteins would reduce costs and increase their applicability. Ionic liquids (ILs) are molten salt compounds that have been shown to modulate the stability and activity of nucleic acids and proteins. In this thesis, molecular modeling studies of DNA/RNA and protein structure in ILs will be discussed (Chapter 1) and this method will be used to study the IL effects on the structure on the …


Synthesis And Characterization Of Chitosan Derivatives Intended For Gene Delivery Applications, Alex M. Mcmullen Jan 2022

Synthesis And Characterization Of Chitosan Derivatives Intended For Gene Delivery Applications, Alex M. Mcmullen

MSU Graduate Theses

Chitosan has been studied as a non-viral vector capable of efficient gene delivery due to its favorable properties such as biodegradability, biocompatibility, and is non-toxic to mammalian cells. Incorporating electrostatic interactions in non-viral vectors enhance the vector permeability. This work focuses on two parts. Firstly, cationic chitosan derivatives were synthesized using quarternary ammonium and phosphonium groups. This was achieved by coupling carboxylic acid ligands with these quarternary groups to chitosan through an amide bond. The carboxylic acid ligands were synthesized from 4-methylbenzoic acid and either triethyl phosphine or triethyl amine. The ligand was then attached to chitosan through an amide …


Exploring The Mechanism Of The Electrostatic Denaturation Of Double-Stranded Dna, Gayatri Raghu May 2021

Exploring The Mechanism Of The Electrostatic Denaturation Of Double-Stranded Dna, Gayatri Raghu

Master's Theses

Electrostatic melting is an electrochemical tool that can be used to analyze the stability of DNA, allowing for the detection of various mutations in double-stranded DNA (dsDNA). Here, we explore the influence of electrostatic double layer formation on the unzipping of dsDNA to better comprehend the mechanism of this process. Previous studies by our lab show that the melting curve produced can distinguish between fully complementary 34-bp strands and a version of the same sequence in which one base pair has been replaced with a mismatch pair or detect and characterize the crosslinking of the dsDNA by anticancer drug cisplatin. …


Effects Of Crowding Agents On I-Motif Dna, Hayden Brines May 2021

Effects Of Crowding Agents On I-Motif Dna, Hayden Brines

Honors Theses

Deoxyribonucleic acid (DNA) is a well-known double stranded, helical, biological molecule. In addition to its more commonly known structure, DNA can also form more complicated structures like G-quadruplexes and i-motifs (iM). The iMs are formed by cytosine rich DNA and are a four stranded structure that is typically looped around itself. The iM formation is typically pH-dependent and is favored in more acidic conditions; the pKa value is approximately 6.5. This pKa value allows for potential in vivo formation, since the cells have a pH of approximately 7.3. Due to this, iMs are thought to be powerful, innovative molecules for …


Utilizing Raman Spectroscopy To Determine The Time Since Deposition Of Heated Bloodstains, Alexis Pearl Barber Jan 2021

Utilizing Raman Spectroscopy To Determine The Time Since Deposition Of Heated Bloodstains, Alexis Pearl Barber

Legacy Theses & Dissertations (2009 - 2024)

The development of novel forensic methods is a rapidly growing area within analytical chemistry. Analytical chemistry is well suited for forensic analyses as a plethora of information can be ascertained from utilizing a wide variety of techniques. At the scene of violent crimes, bloodstain evidence is one of the most frequently found and valuable types of evidence. This is because blood is a complex biological fluid which can provide crucial information during a forensic investigation including DNA evidence. The most informative form of analysis is DNA profiling, which potentially allows for the identification of an individual. However, there is more …


Electrostatic Denaturation Of Dna-Cisplatin Adducts, Eddie Madrigal Aug 2020

Electrostatic Denaturation Of Dna-Cisplatin Adducts, Eddie Madrigal

Master's Theses

In this thesis, electrochemical approaches are used to determine the properties of deoxyribonucleic acid (DNA) by electrostatic denaturation. The electrochemical routine involves an application of a destabilization potential, an equilibration potential, and a square wave voltammogram (SWV) to monitor the extent of melting. Our method uses a monolayer consisting of thiol modified DNA and mercaptohexanol on a gold electrode. These electrodes are then incubated in a complementary sequence tagged with methylene blue. By using our electrostatic denaturation technique, different parameters are explored, such as surface densities, surface coverages, and ionic strengths. As proof of concept, these techniques were applied toward …


Study Of Reaction Dynamics Of Protonated/Deprotonated And Radical Cations Of Guanine In Nucleobases And Nucleosides: Singlet Oxygen Oxidation, C8-Water Addition, Cross-Linking With Lysine And Base-Pair Dissociation, Yan Sun Feb 2020

Study Of Reaction Dynamics Of Protonated/Deprotonated And Radical Cations Of Guanine In Nucleobases And Nucleosides: Singlet Oxygen Oxidation, C8-Water Addition, Cross-Linking With Lysine And Base-Pair Dissociation, Yan Sun

Dissertations, Theses, and Capstone Projects

Among the four DNA nucleobases, guanine (G) has the lowest oxidation potential and represents a preferential target for oxidation and ionization. This leads to the formation of guanine radical cation (G•+) in various oxidative environments. Of the biologically relevant oxidants, electronically excited singlet oxygen (1O2) exclusively damages the guanine bases and gives rise to mutagenesis, DNA-protein cross-linking and cellular death. Combining our home-made electrospray ionization (ESI) guided-ion-beam tandem mass spectrometer, with reaction potential surface calculations and kinetics modeling, five projects have been accomplished as described below.

In project 1, the reactions of deuterated water …


Development Of Dual Functional Dna/Rna Nanostructures For Drug Delivery, Vibhav Amit Valsangkar Jan 2020

Development Of Dual Functional Dna/Rna Nanostructures For Drug Delivery, Vibhav Amit Valsangkar

Legacy Theses & Dissertations (2009 - 2024)

In addition to the traditional biochemical functions, DNA and RNA have been increasingly studied as building blocks for the formation of various 2D and 3D nanostructures. DNA has emerged as a versatile building block for programmable self-assembly. DNA-based nanostructures have been widely applied in biosensing, bioimaging, drug delivery, molecular computation and macromolecular scaffolding. A variety of strategies have been developed to functionalize these nanostructures. The major advantage is that DNA is a very stable molecule and its base-pairing properties can be easily utilized to control and program the formation of desired nanostructures. In addition, some of these DNA/RNA nanostructures have …


Effects Of The Dihydrouracil Lesion On Dna Using 1h/31p 1d And 2d Solution Nmr, Benjamin M. Boyd Dec 2019

Effects Of The Dihydrouracil Lesion On Dna Using 1h/31p 1d And 2d Solution Nmr, Benjamin M. Boyd

MSU Graduate Theses

The effects of the dihydrouracil lesion in DNA were studied using two dimensional NMR spectroscopy. The sequence used was based off of the Drew-Dickerson Dodecamer, with the cytosine in the three position replaced by a dihydrouracil. All of the nonexchangeable proton chemical shifts, with the exception of the H2, H5’, and H5’’, of the lesioned DNA were identified using NOESY spectra and then compared to the chemical shift values of the Drew Dickerson Dodecamer. The largest differences in chemical shifts were observed in the nucleotides neighboring the lesion, both within the strand and on the opposite strand. The imino exchangeable …


Dna Recovery From Handwritten Documents Using A Novel Vacuum Technique, Patrick M. Mclaughlin Aug 2019

Dna Recovery From Handwritten Documents Using A Novel Vacuum Technique, Patrick M. Mclaughlin

Student Theses

Investigations of many crimes such as robberies, kidnappings, and terrorism are often associated with the recovery of a paper document which has been written by the perpetrator. Paper can provide a variety of forensic evidence such as DNA, latent fingermarks, and indented writing. The focus of this study was the collection of probative DNA profiles from the text region of a handwritten note through a vacuum suction device without altering or destroying the document. Collection of DNA evidence was carried out in two separate groups. The first group involved 11 volunteers providing a handwritten note sample with unwashed hands. The …


Infrared Laser Ablation For Biomolecule Sampling, Kelin Wang Mar 2019

Infrared Laser Ablation For Biomolecule Sampling, Kelin Wang

LSU Doctoral Dissertations

In this research, an infrared laser at a wavelength of 3 µm was used to ablate material from tissue sections for biomolecule analysis. Pulsed infrared (IR) irradiation of tissue with a focused laser beam efficiently removed biomolecules, such as proteins, enzymes, DNA, and RNA from tissue sections for further analysis. In a proteomics project, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to determine regions of interest (ROI) for laser ablation. The matrix was then washed off. By overlaying the MSI generated heat-map, the section was sampled using IR laser ablation and custom stage-control software. Two ROI were selected …


Atomic Force Microscopy Tip-Enhanced Laser Ablation, Fan Cao Jan 2019

Atomic Force Microscopy Tip-Enhanced Laser Ablation, Fan Cao

LSU Doctoral Dissertations

In the present work, an apertureless atomic force microscope (AFM) tip-enhanced laser ablation (TELA) system was developed and investigated. An AFM was coupled to an optical parametric oscillator (OPO) wavelength tunable laser for sample ablation with a submicron sampling size. The AFM was used to image the surface and hold the AFM tip 10 nm above the sample surface. The AFM tip is coated with a layer of gold with a thickness of 35 nm. The incident laser wavelength was tuned in the visible and near-infrared (IR) region and focused on the AFM tip. With the tip-enhancement effect, ablation craters …


Computational Modeling As A Tool For Designing Ligands And Receptors, Waqas S. Awan Jan 2019

Computational Modeling As A Tool For Designing Ligands And Receptors, Waqas S. Awan

Legacy Theses & Dissertations (2009 - 2024)

Computational methods can be used for a wide range of applications, especially regarding DNA and RNA. Interactions such as sugar torsions, receptor-ligand interactions, ligand docking/drug docking, receptor modeling, and drug design are excellent candidates for computational analysis and in silico experiments. The use of molecular dynamics software (GROMACS) coupled with molecular design software (MOE) produce insights that may have been otherwise difficult to assess. All these problems are academic in nature but have practical uses outside of academia. Understanding alternate linkages can lead to antibiotic assays to address potential superbug epidemics. Modeling DNA superstructures can provide insight into how large …


Study Of Small Molecules With Dna Monolayers On Gold Electrodes Using Electrochemical Quartz Crystal Microbalance On The Millisecond Timescale, Sarasi Kaushalya Kumari Galagedera Jan 2019

Study Of Small Molecules With Dna Monolayers On Gold Electrodes Using Electrochemical Quartz Crystal Microbalance On The Millisecond Timescale, Sarasi Kaushalya Kumari Galagedera

Legacy Theses & Dissertations (2009 - 2024)

Biosensors based on DNA self-assembled monolayers (SAMs) combined with electrochemical transducers have shown great potential to serve an important role in simple, accurate and inexpensive genetic analyses relevant to many fields. The most popularly adapted method in designing biosensing platforms is the self-assembly of 5’-alkylthiol-modified single stranded or double stranded DNA on gold surfaces followed by a passivation step using a diluent like mercaptohexanol (MCH). Since analytical performance (sensitivity, selectivity and stability) of such sensors is solely related to the probe surface architecture, methods to characterize and measure the surface density has gained a lot of interest among the scientific …


Nmr Spectroscopic Properties Of Nucleotides, And A New Method Of Numeric Calculation Of Raman Intensities For Organic Molecules, William R. Ehrhardt Aug 2018

Nmr Spectroscopic Properties Of Nucleotides, And A New Method Of Numeric Calculation Of Raman Intensities For Organic Molecules, William R. Ehrhardt

MSU Graduate Theses

General and accurate computational methodologies are currently lacking for large chemical systems. This is primarily due to the computational expense required to perform calculations on systems with one hundred or more atoms. Calculated spectroscopic properties could aid in the process of elucidating structural features of large biologically relevant molecules if accurate and inexpensive methods are developed. Towards this end the first steps were taken to design a general methodology for predicting NMR chemical shifts of large nucleic acid systems. It was found that HF and semi-empirical methods were not sufficient for optimization of nucleobases, and therefore larger nucleotide or nucleic …


Dna Functionalized Nanoparticles In Nanobiosensor And Sensor Array Development For Molecular Diagnostics And In Vitro Identification Of Biomolecules, Mustafa Salih Hizir Jan 2018

Dna Functionalized Nanoparticles In Nanobiosensor And Sensor Array Development For Molecular Diagnostics And In Vitro Identification Of Biomolecules, Mustafa Salih Hizir

Legacy Theses & Dissertations (2009 - 2024)

Nucleic acid technology along with vast variety of nanomaterials has demonstrated a great potential in many applications from biosensing studies to molecular diagnostics, from biomedical and bioanalytical research to environmental analysis. Especially short single stranded (ss) DNA molecules, called oligonucleotides, are extraordinary biopolymers featuring diverse functionality on the nanoparticles thanks to their high degree of programmability, target-specific binding or cleavage, molecular recognition ability, structure-switching capability, and unique interactions at the bio-nano interfaces. Among those, there have been many biosensing applications utilizing ss DNAs and numerous nanomaterials through various detection techniques such as fluorometric, colorimetric or electrochemical methods. Although many groundbreaking …


On The Conformational Dynamics Of Dna: A Perspective From Molecular Dynamics Simulations, Ning Ma Apr 2017

On The Conformational Dynamics Of Dna: A Perspective From Molecular Dynamics Simulations, Ning Ma

USF Tampa Graduate Theses and Dissertations

The main focus of my dissertation is on the conformational motion of DNA, studied by applying tools from the computational chemistry field. In addition, studies of relative α- and 310 helical stabilities in peptides/mini-proteins, and a molecular flooding study of the retinoid X-receptor as part of a continuing drug design effort are presented. In molecular biology, it has been well known that sequence determines structure, and structure controls function. For proteins or DNA to work properly, the correct configuration is required. Mutations may alter the structure, which can cause malfunction. Non-mutational effects, such as a change in environment may also …


Mutagenic And Spectroscopic Investigation Of Ph Dependent Cooa Dna Binding, Brian R. Weaver Apr 2017

Mutagenic And Spectroscopic Investigation Of Ph Dependent Cooa Dna Binding, Brian R. Weaver

Chemistry Honors Papers

The carbon monoxide (CO) sensing heme protein, CooA, is a transcription factor which exists in several bacteria that utilize CO as an energy source. CooA positively regulates the expression of coo genes in the presence of CO such that the corresponding proteins may metabolize CO. The present studies have yielded the unexpected result that Fe(III) CooA binds DNA tightly at pH < 7, deviating from all previously reported work which indicate that CooA DNA binding is initiated only when the exogenous CO effector reacts with the Fe(II) CooA heme. This observation suggests that the disruption of one or more salt bridges upon effector binding may be a critical feature of the normal CooA activation mechanism. To test this possibility, several protein variants that eliminated a selected salt bridge for the CooA homolog from Rhodospirillum rubrum were prepared via site-directed mutagenesis. Samples of these variant proteins, which were overexpressed in Escherichia coli, were then characterized by spectroscopic methods and functional assays to investigate the impact these mutations had on CooA heme coordination …


Silica Nanoparticles For The Delivery Of Dna And Rnai In Cancer Treatment, Michael Aaron Vrolijk Jan 2017

Silica Nanoparticles For The Delivery Of Dna And Rnai In Cancer Treatment, Michael Aaron Vrolijk

Graduate College Dissertations and Theses

DNA and interfering RNA (RNAi) – short interfering RNA (siRNA) and micro RNA (miRNA) – are promising new cancer therapies, especially for drug resistant lines. However, they require a delivery system in vivo to prevent degradation and off target effects. Silica based nanoparticles, both solid and mesoporous, are a promising option due to their biocompatibility, ease of preparation and morphology control, reproducibility, and facile addition of functional groups including targeting ligands.

After a brief introduction to cancer treatment and review of the current nanoparticle treatments undergoing clinical trials, this thesis details the many methods explored over the past ten years …


Gas-Phase Ion Spectroscopy Of Nucleobases And Mononucleotides: Models For Higher Order Nucleic Acids, Yuan-Wei Nei Jan 2017

Gas-Phase Ion Spectroscopy Of Nucleobases And Mononucleotides: Models For Higher Order Nucleic Acids, Yuan-Wei Nei

Wayne State University Dissertations

Experiments examining the structures and stabilities of protonated and sodium cationized nucleobases, and deprotonated DNA and RNA mononucleotides are presented and discussed in this dissertation. These studies were carried out using the infrared multiple photon dissociation (IRMPD) action spectroscopy technique that utilizes a Fourier transform ion cyclotron mass spectrometer (FT-ICR MS) coupled to a free electron laser (FEL) located at the Radboud University Nijmegen. Ionic species of these biologically important complexes were generated using an electrospray ionization source and then mass isolated to have their infrared (IR) spectra measured by the experimental apparatus. Detailed analysis of the IR spectra measured …


Literature Review On The Use Of Nucleic Acid-Based Logic Gates For The Detection Of Human Diseases, Enrique J. Blanco Martinez Jan 2017

Literature Review On The Use Of Nucleic Acid-Based Logic Gates For The Detection Of Human Diseases, Enrique J. Blanco Martinez

Honors Undergraduate Theses

Conventional methods for diagnosis of human disease are, at times, limited in different regards including time requirement, either experimental or data processing, sensitivity, and selectivity. It is then that a Point of Care Criteria, which considers the true utility and usefulness of the device, is employed to propose new diagnostic devices capable of overcoming the aforementioned shortcomings of conventional tools. Nucleic acid, characterized for its predictable base-pairing nature, is considered to be a highly-selective, yet greatly modifiable device. Its behavior is then described through Boolean Logic, where “true” or “false” outputs are mathematically described as “1” and “0”, respectively. This …


Dna Aptamer-Based Smart Mri Contrast Agent For Dopamine, Angel D. Thompson Jan 2017

Dna Aptamer-Based Smart Mri Contrast Agent For Dopamine, Angel D. Thompson

Legacy Theses & Dissertations (2009 - 2024)

A smart contrast agent is a molecule whose relaxivity changes in response to a biological trigger such as a biomolecule, enzymatic activity, or pH. The focus of my graduate project was to develop a DNA aptamer-based smart MRI contrast agent capable of sensing dopamine. Aptamers are single-stranded oligonucleotides that form stable three-dimensional structures efficient in binding with high affinity and specificity for a range of targets. The DNA aptamer has an attached lanthanide-based probe, consisting of a metal ion Gd(III) and a macrocyclic DOTA ligand. The aptamer was assembled using solid phase oligonucleotide synthesis. Nuclear magnetic resonance was used to …


Modeling The 3-Dimensional Structure Of D(Cgcgaattcgcg) And Its 8-Oxo-Da5 Adduct With 1h Nmr Noesy Refinements, Christopher Miles Reynolds Dec 2016

Modeling The 3-Dimensional Structure Of D(Cgcgaattcgcg) And Its 8-Oxo-Da5 Adduct With 1h Nmr Noesy Refinements, Christopher Miles Reynolds

MSU Graduate Theses

Since the characterization of the oligomer d(CGCGAATTCGCG) has been published by Dickerson et al., computational studies have been carried out to produce an accurate 3D model. These models are important for visualizing how certain DNA repair enzymes, such as the glycosylases, recognize sites of damage by signatures of local 3D distortion. Using 1H NOESY-generated internuclear distances to replicate the model of this oligomer and a derivative with an 8-oxo-dA5 lesion, we propose characteristics of helical distortion that DNA glycosylases might use for identifying this form of damage. In addition, this method of comparison can be used to study the repair …


Specific Binding Affinity Of The Non-Catalytic Domain Of Eukaryotic Like Type Ib Topoisomerase Of Vaccinia Virus, Benjamin R. Reed Sep 2016

Specific Binding Affinity Of The Non-Catalytic Domain Of Eukaryotic Like Type Ib Topoisomerase Of Vaccinia Virus, Benjamin R. Reed

Dissertations, Theses, and Capstone Projects

Topoisomerases are ubiquitous proteins that alter supercoiling in double stranded DNA (dsDNA) during transcription and replication and. vaccinia and the closely related poxvirus variola virus, at 314 amino acids in length, encode the smallest of the type I topoisomerases(TopIB). TopIB is a two domain protein that recognizes the sequence 5’-T/CCCTT, cleaves at the 3’-end and relaxes supercoiling through rotation. The C-terminal domain (CTD) alone contains the catalytic activity and specificity. Deletion of the N-terminal domain results in a greatly reduced rate of relaxation and rapid dissociation. Biochemical data suggests that the N-terminal domain (NTD) is important for pre-cleavage binding and …


Synthesis And Characterization Of Amphiphiles For Mammalian Cell Transfection And Antimicrobial Activity, Joseph William Meisel Aug 2016

Synthesis And Characterization Of Amphiphiles For Mammalian Cell Transfection And Antimicrobial Activity, Joseph William Meisel

Dissertations

Amphiphiles are molecules that contain both water-soluble and water-insoluble components. The dual nature of these molecules engenders remarkable properties including the ability to self-assemble into ordered structures. Cell membranes are composed of amphiphilic phospholipids that organize into a bilayer motif. Synthetic amphiphiles can interact with natural membranes and influence the transport of molecules across the cell membrane. The work elaborated in this report employs amphiphiles to co-assemble with DNA and transport the genetic material across cell membranes. First, a simplified method for interacting DNA with amphiphiles was developed. Second, a series of known ion-transporting compounds were assayed for their interaction …


Towards An Understanding Of The Role Of Cation Packaging On Dna Protection From Oxidative Damage, Cody E. Gay Jan 2016

Towards An Understanding Of The Role Of Cation Packaging On Dna Protection From Oxidative Damage, Cody E. Gay

Theses and Dissertations--Chemistry

In sperm chromatin, DNA exists in a highly condensed state reaching a final volume roughly twenty times that of a somatic nucleus. For the vast majority (>90%) of sperm DNA in mammals, somatic-like histones are first replaced by transition proteins which in turn are replaced by arginine-rich protamines. This near crystalline organization of the DNA in mature sperm is thought crucial for both the transport and protection of genetic information since all DNA repair mechanisms are shut down. Recent studies show that increased DNA damage is linked to dysfunctions in replacing histones with protamines resulting in mispackaged DNA. This …


The Study Of Nf-Κb Peptide Mimics And How Proteins Bind Dna, Allee M. Murray Jan 2016

The Study Of Nf-Κb Peptide Mimics And How Proteins Bind Dna, Allee M. Murray

Honors College Theses

The protein complex nuclear factor kappa B (NF-κB) is widely considered to be one of the most influential transcription factors when studying cellular functions. Peptide mimics of NF-κB aim to inhibit DNA binding in order to displace the natural transcription factor, therefore inhibiting transcription and translation. In theory, NF-κB is not the problem; the real problem lies in directing the synthesis and expression of harmful proteins. In conjunction with this, the project aims to study NF-κB and its structure and function to determine what criteria are important for the binding of DNA in order to design a peptide that comes …