Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Chemistry

DFT

Wright State University

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Quantum Chemical Pka Estimation Of Carbon Acids, Saturated Alcohols, And Ketones Via Quantitative Structure-Activity Relationships, Corey Adam Baldasare Jan 2020

Quantum Chemical Pka Estimation Of Carbon Acids, Saturated Alcohols, And Ketones Via Quantitative Structure-Activity Relationships, Corey Adam Baldasare

Browse all Theses and Dissertations

Acid dissociation constants, often expressed as pKa values, afford vital information with regards to molecular behavior in various environments and are of significance in fields of organic, inorganic, and medicinal chemistry. Several quantitative structure-activity relationships (QSARs) were developed that correlate experimental pKas for a given class of compounds with a descriptor(s) calculated using density functional theory at the B3LYP/6-31+G** level utilizing the CPCM solvent model. A set of carbon acids provided a good final QSAR model of experimental aqueous pKas versus ΔEH2O (R2 = 0.9647) upon removal of three aldehydes as outliers. A study of saturated alcohols offered a final …


Quantum Chemical Investigations Of Nucleophilic Aromatic Substitution Reactions And Acid Dissociations Of Aliphatic Carboxylic Acids, David Henry Schory Jan 2009

Quantum Chemical Investigations Of Nucleophilic Aromatic Substitution Reactions And Acid Dissociations Of Aliphatic Carboxylic Acids, David Henry Schory

Browse all Theses and Dissertations

Quantum chemical analysis was used to examine nucleophilic aromatic substitution reactions of fluorinated benzophenones, diphenyl sulfones, and triphenylphosphine oxides. Some experimental results for these compounds were contrary to conventional wisdom, which holds that calculated atomic charges for the aromatic sites and 13C-NMR and 19F-NMR chemical shifts should allow prediction of the preferred sites for aromatic substitution. Density functional theory (B3LYP/6-31+G*//RM1) and semi-empirical (RM1) quantum chemical calculations were employed to study the intermediates in the reaction pathways in order to identify the preferred paths for aromatic substitution. In most cases studied para substitution pathways had the lower energy intermediates …