Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Tin Sensitization For Electroless Plating, Xingfei Wei Dec 2013

Tin Sensitization For Electroless Plating, Xingfei Wei

Graduate Theses and Dissertations

The tin sensitization process has been used in electroless plating since 1940s Brenner and Riddell developed the electroless plating for surface metallization method. It was found to be an interesting topic to study tin sensitization for chemically controlling metal deposition on different substrates, because the tin sensitization process had critical effects on the electroless plated metal thin films. Nowadays electroless plating metal deposition is still an important method for depositing metals. It has a few advantages over the vapor deposition and electrodeposition method, such as work in an ambient condition, on nonconductive substrates, and without extra power input. Applying electroless …


Oxidation Of Dibenzothiophene To Dibenzothiophene Sulfone Using Tio2, Juan H. Leal Dec 2013

Oxidation Of Dibenzothiophene To Dibenzothiophene Sulfone Using Tio2, Juan H. Leal

Theses and Dissertations - UTB/UTPA

The oxidation of dibenzothiophene (DBT) to dibenzothiophene-sulfone has been considered as an alternate method to remove sulfur from crude oil. This study demonstrates that the oxidative desulfurization (ODS) of DBT to DBT-sulfone occurs using rutile TiO2 as a catalyst with the aid of O2. In addition, anatase and brookite were synthesized and tested in the reaction. Particle size of the catalysts was calculated and morphology was explored using SEM. A kinetic study was performed to determine the catalytic effect and activation energy of TiO2. The oxidation reaction was carried out by refluxing TiO2 and DBT in decahydronapthalene while flowing O2 …


Microfluidics Guided By Redox-Magnetohydrodynamics (Mhd) For Lab-On-A-Chip Applications, Vishal Sahore Dec 2013

Microfluidics Guided By Redox-Magnetohydrodynamics (Mhd) For Lab-On-A-Chip Applications, Vishal Sahore

Graduate Theses and Dissertations

Unique microfluidic control actuated by simply turning off and on microfabricated electrodes in a small-volume system was investigated for lab-on-a-chip applications. This was accomplished using a relatively new pumping technique of redox-magnetohydrodynamics (MHD), which as shown in this dissertation generated the important microfluidic features of flat flow profile and fluid circulation. MHD is driven by the body force, FB = j × B, which is the magnetic part of the Lorentz force equation, and its direction is given by the right hand rule. The ionic current density, j, was generated in an equimolar solution of potassium ferri/ferro cyanide by applying …


Electrospinning Polymer Blends For Biomimetic Scaffolds For Acl Tissue Engineering, Vanessa Lizeth Garcia Dec 2013

Electrospinning Polymer Blends For Biomimetic Scaffolds For Acl Tissue Engineering, Vanessa Lizeth Garcia

Theses and Dissertations - UTB/UTPA

The anterior cruciate ligament (ACL) rupture is one of the most common knee injuries. Current ACL reconstructive strategies consist of using an autograft or an allograft to replace the ligament. However, limitations have led researchers to investigate tissue engineered grafts, known as scaffolds, through electrospinning. Scaffolds made of natural and synthetic polymer blends have the potential to promote cell adhesion while having strong mechanical properties. However, enzymes found in the knee are known to degrade tissues and affect the healing of intra-articular injuries. Results suggest that the natural polymers used in this study modify the thermal properties and tensile strength …


Monodentate, Bidentate And Photocrosslinkable Thiol Ligands For Improving Aqueous Biocompatible Quantum Dots, Hiroko Takeuchi Dec 2013

Monodentate, Bidentate And Photocrosslinkable Thiol Ligands For Improving Aqueous Biocompatible Quantum Dots, Hiroko Takeuchi

Graduate Theses and Dissertations

Water-soluble Quantum Dots (QDs) are highly sensitive fluorescent probes that are often used to study biological species. One of the most common ways to render QDs water-soluble for such applications is to apply hydrophilic thiolated ligands to the QD surface. However, these ligands are labile and can be easily exchanged on the QD surface, which can severely limit their application. As one way to overcome this limitation while maintaining a small colloidal size of QDs, we developed a method to stabilize hydrophilic thiolated ligands on the surface of QDs through the formation of a crosslinked shell using a photocrosslinking approach. …


Spectroscopic And Kinetic Study Of Copper-Exchanged Zeolites For The Selective Catalytic Reduction Of Nox With Ammonia, Shane Adam Bates Oct 2013

Spectroscopic And Kinetic Study Of Copper-Exchanged Zeolites For The Selective Catalytic Reduction Of Nox With Ammonia, Shane Adam Bates

Open Access Dissertations

The recent application of metal-exchanged, small-pore zeolites for use in the selective catalytic reduction (SCR) of NOx with ammonia NH3 for automotive deNOx applications has been a great stride in achieving emission standard goals. Copper-exchanged SSZ-13 (Cu-SSZ-13), the small-pore zeolite in this study, has been shown to be very hydrothermally stable and active under conditions presented in the exhaust of the lean-burn diesel engine. In this work, detailed studies were performed to identify many aspects of the active site(s) in Cu-SSZ-13 in order to learn about the standard SCR mechanism.

A series of seven Cu-SSZ-13 samples were …


Elucidation Of Chiral Recognition Mechanisms Of Solutes By Amylose Tris[(S)-Alpha-Methylbenzylcarbamate] Sorbent, Hung-Wei Tsui Oct 2013

Elucidation Of Chiral Recognition Mechanisms Of Solutes By Amylose Tris[(S)-Alpha-Methylbenzylcarbamate] Sorbent, Hung-Wei Tsui

Open Access Dissertations

Enantioselective separations of chiral molecules are important in various chemical fields, such as pharmaceuticals and agrochemicals industries. Polysaccharide-based sorbents have been widely used in chiral liquid chromatography. The recognition mechanisms which determine their enantioselectivities are not completely understood.

In this dissertation, the chiral recognition mechanisms of a widely used commercial sorbent, amylose tris[(S)-alpha-methylbenzylcarbamate], for benzoin (B) enantiomers were first studied. The HPLC data for benzoin with pure n-hexane as the mobile phase have been obtained. The behavior of sorbent-solute-hexane systems can be interpreted by considering only sorbent solute two-component interactions. Infrared (IR) spectra showed evidence of substantial hydrogen bonding (H-bonding) …


Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang Oct 2013

Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang

Open Access Dissertations

Photo-induced water splitting of water into H2 and O2 has been a major focus in the development of clean and renewable energy. The development of viable and efficient catalysts that facilitates O2 production remains the major challenge in the study of the corresponding half-reaction of water oxidation. There are plenty of metal oxides reported active in the catalysis of water oxidation. However, several important performance bench marks of those materials, such as the non-stoichiometric production of O2, slow reaction rate and/or low quantum efficiency, remain to be improved.

Ruthenium oxide (RuO2) has long been known as one of the most …


Utilizing Electron Microscopy And Spectroscopy Methods To Understand Water Structure And Water Doping, Lior Miller Oct 2013

Utilizing Electron Microscopy And Spectroscopy Methods To Understand Water Structure And Water Doping, Lior Miller

Open Access Dissertations

Water is the second most common element in the universe and the most studied material on earth. Most of the studies concerning water are from the fields of chemistry and biology. Hence, the structure of water molecules and short range order and interactions are well characterized and understood. However, the collective arrangement of water molecules and the long range order are still missing. Understanding of this long range order in water is needed, as it is the key to many water activities.

To fill this gap, this study utilizes a new direct method for characterization of water in the vapor …


Synthesis Of Platinum And Platinum-Copper Branched Nanoparticles For Electrooxidation Of Methanol, Eric Courtland Taylor Aug 2013

Synthesis Of Platinum And Platinum-Copper Branched Nanoparticles For Electrooxidation Of Methanol, Eric Courtland Taylor

Graduate Theses and Dissertations

Platinum and Pt alloys are among the most important heterogeneous catalysts for many organic reactions and electrochemical reactions associated with the fuel cell technologies. How to reduce Pt usage while maintaining the performance of the catalysts becomes a subject for intensive research in materials chemistry. For heterogeneous catalysis, the catalytic reactivity and selectivity are strongly correlated with different crystallographic facets exposed on the surface. The facets with high-index planes whose Miller indices with at one is larger than unity are generally more active than those with low-index planes (e.g., {100}, {111}, and {110}). Tuning the morphology of the nanoparticles to …


Investigations Toward Tunability Of Mechanical, Thermal, And Impact Properties Of Thiol-Ene Networks For Novel High Energy Absorbing Materials, Olivia Devon Mcnair May 2013

Investigations Toward Tunability Of Mechanical, Thermal, And Impact Properties Of Thiol-Ene Networks For Novel High Energy Absorbing Materials, Olivia Devon Mcnair

Dissertations

The UV polymerization of thiols with electron rich alkenes is a highly resourceful reaction that has been utilized by scientists within various disciplines to produce an even more versatile display of applications. This dissertation focuses on a newer application, thiol-ene network (TEN) materials for energy absorption devices. TEN networks display a host of positive polymer properties such as low stress, high optical clarity and uniformity, but they also suffer from unfavorable mechanical properties such as low toughness and elongation at break. The poor mechanical properties demonstrated by TENs prohibit them as choice materials for applications requiring thicker material forms, including …


New Effects Of Aging And Lattice Intercalation On Surface Properties Of Titanate Nanobelts, Roger Williams May 2013

New Effects Of Aging And Lattice Intercalation On Surface Properties Of Titanate Nanobelts, Roger Williams

Graduate Theses and Dissertations

Titanate nanobelts (NBs) have structural characteristics beyond that of clays. Due to a negatively charged lattice matrix of edge-shared TiO6-octahedra, the location of intercalated cations within the interlayer space may dictate the charge-conductions. This environment may in turn govern the lattice-framework's stability and surface properties, based upon our preliminary

data.

On that basis, these nanomaterials have been found in our lab to possess superb biological compatibility that is closely related to the types of the intercalated cations. In addition, a prolonged agitation was proven to enable us to manipulate the titanate NBs' length. In a parallel study, a ripening was …


Electrospinning Nanofibers For Controlled Drug Release, Indrani Banik May 2013

Electrospinning Nanofibers For Controlled Drug Release, Indrani Banik

Theses and Dissertations - UTB/UTPA

Electrospinning is the most widely studied technique for the synthesis of nanofibers. Electrospinning is considered as one of the technologies that can produce nanosized drugs incorporated in polymeric nanofibers. In vitro and in vivo studies have demonstrated that the release rates of drugs from these nanofiber formulations are enhanced compared to those from original drug substance. This technology has the potential for enhancing the oral delivery of poorly soluble drugs [1]. The electrospun mats were made using Polycaprolactone/PCL, Poly(DL-lactide)/PDL 05 and Poly(DL-lactide-co-glycolide)/PLGA. The drugs incorporated in the electrospun fibers were 5-Fluorouracil and Rapamycin. The evidence of the drugs being embedded …


Dynamic Bioactive Stimuli-Responsive Polymeric Surfaces, Heather Marie Pearson May 2013

Dynamic Bioactive Stimuli-Responsive Polymeric Surfaces, Heather Marie Pearson

Dissertations

This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of –COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface …


Synthesis Of Polyhedral Oligomeric Silsesquioxane (Poss) Functionalized Carbon Nanotubes For Improved Dispersion In Polyurethane Films, Xiaonan Kou May 2013

Synthesis Of Polyhedral Oligomeric Silsesquioxane (Poss) Functionalized Carbon Nanotubes For Improved Dispersion In Polyurethane Films, Xiaonan Kou

Dissertations

Carbon nanotube (CNT) polymer nanocomposites are promising advanced materials. These materials exhibit the advantages of traditional polymeric materials, such as being light weight and easy to process, combined with the potential to exhibit enhanced mechanical, thermal and electrical properties compared to pure polymers. To achieve substantial improvement of composite properties at low CNT loading, uniform dispersion of CNTs in the polymer matrix and strong CNT-polymer interfacial interaction are needed. However, it is difficult to achieve adequate dispersion and interfacial interactions due to the inert nature of CNTs. In this project, polyhedral oligomeric silsequioxane (POSS) will be used as a dispersing …