Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Chemistry

2020

Institution
Keyword
Publication
File Type

Articles 1 - 30 of 663

Full-Text Articles in Physical Sciences and Mathematics

Molecular Mechanism Of Cyanobacteria Circadian Clock Oscillator And Effect Of Co Factors On Its Oscillation, Manpreet Kaur Dec 2020

Molecular Mechanism Of Cyanobacteria Circadian Clock Oscillator And Effect Of Co Factors On Its Oscillation, Manpreet Kaur

Dissertations

The circadian rhythms arise as an adaptation to the environmental 24-hour day and night cycle due to Earth's rotation. These rhythms prepare organisms to align their internal biological activities and day to day behavior or events with the environmental change of the 24-hour day and night cycle. Circadian rhythms are found widely in all living kingdoms of life on Earth. Cyanobacteria are photosynthetic prokaryotes which first used to study these circadian rhythms. Among cyanobacterial species, Synechococcus elongatus PCC 7942 (henceforth, S. Elongatus) is the simplest organism with a durable and sturdy circadian clock and is study as a model organism. …


The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu Dec 2020

The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu

Dissertations

The main goal of this dissertation is to generate data and parameterizations to accurately represent soot aerosols in atmospheric models. Soot from incomplete combustion of fossil fuels and biomass burning is a major air pollutant and a significant contributor to climate warming. The environmental impacts of soot are strongly dependent on the particle morphology and mixing state, which evolve continuously during atmospheric transport via a process known as aging. To make predictions of soot impacts on the environment, most atmospheric models adopt simplifications of particle structure and mixing state, which lead to substantial uncertainties. Using an experimentally constrained modeling approach, …


Modeling Mass Transfer And Chemical Reaction In Industrial Nitrocellulose Manufacturing Processes, Francis Patrick Sullivan Dec 2020

Modeling Mass Transfer And Chemical Reaction In Industrial Nitrocellulose Manufacturing Processes, Francis Patrick Sullivan

Dissertations

A series of models are proposed to describe the production of military grade nitrocellulose from dense cellulose materials in mixtures of nitric acid, sulfuric acid, and water. This effort is conducted to provide a predictive capability for analyzing the rate and extent of reaction achieved under a range of reaction conditions used in the industrial nitrocellulose manufacturing process for sheeted cellulose materials. Because this capability does not presently exist, nitrocellulose producers have historically relied on a very narrow range of cellulose raw materials and resorted to trial and error methods to develop processing conditions for new materials. This tool enables …


Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel Dec 2020

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel

Theses

The scalability and power efficiency of the conventional CMOS technology is steadily coming to a halt due to increasing problems and challenges in fabrication technology. Many non-volatile memory devices have emerged recently to meet the scaling challenges. Memory devices such as RRAMs or ReRAM (Resistive Random-Access Memory) have proved to be a promising candidate for analog in memory computing applications related to inference and learning in artificial intelligence. A RRAM cell has a MIM (Metal insulator metal) structure that exhibits reversible resistive switching on application of positive or negative voltage. But detailed studies on the power consumption, repeatability and retention …


Novel Applications Of Mass Spectrometry For Quantitation And Reaction Mechanism Elucidation, Pengyi Zhao Dec 2020

Novel Applications Of Mass Spectrometry For Quantitation And Reaction Mechanism Elucidation, Pengyi Zhao

Dissertations

Mass spectrometry (MS) has been growing as one of the most widely used tools in the field of analytical chemistry. Various applications have been developed to harness the high sensitivity and specificity of mass spectrometric analysis. In this dissertation, two major challenges are addressed. By developing mass spectrometric-based methods, absolute quantitation of proteins/peptides have been achieved. Elucidation of various reaction mechanisms are also enabled. These are the focuses of this dissertation.

In Chapters 2 to 4, a novel quantitation method is developed, titled as coulometric mass spectrometry (CMS). The strength of this method is that no reference standard or isotope-labeled …


Development Of Novel Membranes For Nanocarbon Enhanced Separation With Application In Biofuels And Solvent Recover, Oindrila Gupta Dec 2020

Development Of Novel Membranes For Nanocarbon Enhanced Separation With Application In Biofuels And Solvent Recover, Oindrila Gupta

Dissertations

Pharmaceutical industries historically have had one of the highest amounts of solvent waste generated per unit of drug manufactured. Energy requirements and carbon footprint of current solvent recycling processes tend to be quite high, and the incineration of the solvents for waste disposal produces toxic air emissions. Also, rapidly increasing demand for energy and strict regulation on engine pollutant emissions have necessitated the use of alcohol as carbon-neutral fuels. Thermal distillation is one of the most common methods for the separation of alcohol-water mixtures. However, its application is limited due to energy requirements and high operating costs, and heating to …


Photothermal And Photochemical Strategies For Lightinduced Shape-Morphing Of Soft Materials, Alexa Simone Kuenstler Dec 2020

Photothermal And Photochemical Strategies For Lightinduced Shape-Morphing Of Soft Materials, Alexa Simone Kuenstler

Doctoral Dissertations

Engineering materials with the capability to transform energy from photons into mechanical work is an outstanding technical challenge with implications across myriad disciplines. Despite decades of work in this area, comprehensive understanding of how to prescribe shape change and work output in photoactive systems remains limited. To this end, this dissertation explores strategies to assemble photothermal and photochemical moieties in soft material systems to fabricate photoaddressable devices capable of specific shape changes upon illumination. Chapters 2 and 3 describe a methodology for spatially patterning plasmonic nanoparticles in liquid crystal elastomer fibers and sheets to specify local photothermally-induced strain profiles. Using …


Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta Dec 2020

Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta

Doctoral Dissertations

Biologic drugs have gained enormous research attention in recent years as reflected by the development of multiple candidates to the clinical pipelines and an increased percentage of FDA approval. This is reasoned by the fact that biologics have been proven to deliver more predictive and promising benefits for many hard-to-cure diseases by ‘drugging the undruggable’ targets. However, the challenges associated with biologic drug development are multi-fold, viz, poor encapsulation efficacy, systemic instability, low cellular internalization and endosomal escape capability. Thus, it is essential to develop new molecular strategies that can not only address the associated drug delivery challenges, but also …


Engineered Proteins As Tools To Understand Ubiquitin Signaling, Lin Hui Chang Dec 2020

Engineered Proteins As Tools To Understand Ubiquitin Signaling, Lin Hui Chang

Doctoral Dissertations

Ubiquitin is a 76 amino acids protein that is evolutionary conserved in eukaryotes. It is an important signaling molecule in a plethora biological events, such as protein degradation, DNA damage response, and transcription. This thesis aims to develop engineered protein as a tool to study ubiquitin signaling. Through targeted mutagenesis and directed evolution, a deubiquitinase is reprogrammed into a transamidase, which lead to the generation of ubiquitinprotein conjugates with discrete ubiquitin linkages through auto-ubiquitination. These ubiquitin-protein conjugates could be used as a model substrate to profile their interaction of different ubiquitin interacting proteins. In addition, using directed evolution and deep …


Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney Dec 2020

Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney

Doctoral Dissertations

A material is considered soft when its bulk modulus is significantly greater than its shear modulus. Rubbery polymers are a class of soft materials where resistance to extension is mainly entropic in nature. Polymeric soft solids differ from liquids due to the presence of a percolated network of strong bonds that resist deformation and flow on a given time scale. The incompressible nature, entropically driven elasticity, and molecular scale network structure of soft polymeric solids combine to impart unique mechanical behavior that often results in complex material responses to simple loading situations. An important example of this is cavitation in …


Accurate Quantitation Of Hexavalent Chromium For Reference Standard Certification And Quality Control Testing Using Speciated Isotope Dilution Mass Spectrometry, James E. Henderson Dec 2020

Accurate Quantitation Of Hexavalent Chromium For Reference Standard Certification And Quality Control Testing Using Speciated Isotope Dilution Mass Spectrometry, James E. Henderson

Electronic Theses and Dissertations

The ability to perform accurate, repeatable, and defensible elemental and molecular speciated analysis is immensely significant for measurements that support human health, environmental science, and industry. This is especially true since trivalent chromium [Cr(III)] is necessary for proper nutrition, while hexavalent chromium [Cr(VI)] is extremely toxic, genotoxic, and carcinogenic. The main challenges associated with speciated analysis are related to reactive species that are continuously transformed or converted to other species during sample processing. Accurate determination of Cr(III) and Cr(VI) species require a method that is capable of monitoring and correcting for interconversion, bias, and instrumental error. Traditional quantitative methods, such …


Atom Transfer Radical Processes: From Catalyst Design To Polymer Synthesis, Characterization, And Application, Michael Novak Dec 2020

Atom Transfer Radical Processes: From Catalyst Design To Polymer Synthesis, Characterization, And Application, Michael Novak

Electronic Theses and Dissertations

Due to the toxicity of heavy metals and their prevalence in the environment there exists a need to develop highly active transition metal catalysts ultimately reducing the amount needed for chemical transformations. Additionally, there is interest in the scientific community for creating new materials that can remove these pollutants from industrial wastewater prior to its release into the environment. The work presented here focuses on the reduction and removal of heavy metals from industrial hazardous waste by designing novel highly active catalysts and developing polymeric adsorbents.

Highly active catalyst complexes consisting of novel hybrid ligands, 2-(dimethylamino)ethyl-bis-[2-(pyridylmethyl)amine] (M1-T2), and bis[2-(dimethylamino)ethyl]-2-(pyridylmethyl)amine (M2-T1), …


Functionalized Materials From Atom Transfer Radical Processes, Sean Fischer Dec 2020

Functionalized Materials From Atom Transfer Radical Processes, Sean Fischer

Electronic Theses and Dissertations

This work is focused on the synthesis, characterization, and application of functionalized materials prepared from atom transfer radical processes. Atom transfer radical processes encompass both atom transfer radical addition (ATRA) and polymerization (ATRP) reactions, both of which are catalyzed by ppm amounts of copper complexes. The synthetic efforts of ATRA include increasing adduct selectivity through optimization of reaction conditions to generate small molecules in high to moderate yields. ATRA provides retention of the halogen moiety, which is an attractive functional group that can be further modified with other transformations. Specifically, the copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) allows for the realization …


Control Of Corrosion On Ss316l Using Surface Initiated Polymers, Alexander Rupprecht Dec 2020

Control Of Corrosion On Ss316l Using Surface Initiated Polymers, Alexander Rupprecht

Electronic Theses and Dissertations

Pitting corrosion is arguably one of the most destructive and dangerous forms of corrosion, resulting in damage to structures, the environment, and public health. In addition, damage caused to structures such as bridges, pipelines, and boats, corrosion also has a profound effect on the biomedical community. Implanted metallic devices (i.e., vascular stents and artificial joints) are prone to pitting corrosion caused by aggressive ions present in extracellular fluid. To provide a corrosion-resistant surface on SS316L, films of poly(styrene), poly(methyl acrylate), and poly(methyl methacrylate) were formed using surface-initiated atom transfer radical polymerization (SI-ATRP). The resulting hydrophobic polymer films had a fractional …


Nanomaterial Composites Based On Potassium Hexaniobate, Perovskites, And Iron Triazole Spin Crossover Complexes, Alexis A. Blanco Dec 2020

Nanomaterial Composites Based On Potassium Hexaniobate, Perovskites, And Iron Triazole Spin Crossover Complexes, Alexis A. Blanco

University of New Orleans Theses and Dissertations

Development of novel materials with sought after properties has been the forefront in the field of nanomaterials. Hybrid nanomaterial architectures, or nanocomposites, is an important subgroup within the material chemistry umbrella. One such example of nanocomposite systems is peapod-like structures that are composed of 0D nanoparticles (“peas”) and 2D nanosheets (“pods”). Nanopeapods may display unique properties that were not attainable within individual components. BaTiO3 nanoparticles can be produced using solvothermal methods (20 h) in the presence of Ba(NO3)2, titanium (IV) butoxide, and oleic acid as the surfactant. Synthesis parameters were modified to allow for both …


Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt Dec 2020

Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt

University of New Orleans Theses and Dissertations

Molecular Dynamics simulations are a highly useful tool in helping understand the fundamental interactions present in a variety of chemical systems. The work discussed here illustrates it’s use in determining the conformational dynamics of the Zika and SARS-Cov-2 helicase in a physiological environment, largely in an effort to discover inhibitors capable of rendering the protein inert. Additionally, we show how it can be used to understand paradoxical trends in the anion-induced precipitation of Cucurbituril cavitands.

Viral helicases are motor proteins tasked with unwinding the viral dsRNA, a crucial step in preparing the strand to be translatable by host cells. By …


Analysis Of Titanium Dioxide Nanoparticles In Foods Using Raman Spectroscopic Techniques, Janamkumar Pandya Dec 2020

Analysis Of Titanium Dioxide Nanoparticles In Foods Using Raman Spectroscopic Techniques, Janamkumar Pandya

Doctoral Dissertations

Titanium dioxide (TiO2) and its nanoparticles (NPs) are widely used in various applications. Recently, the presence of TiO2 NPs in food and consumer products raised safety concerns to human health and the environment. The goal of this project is to explore the capability of Raman Spectroscopy in the analysis of TiO2-NPs and apply this technique for the analysis of TiO2-NPs in food and environmental samples. Two approaches, i.e. the ligand-based and the mapping-based, were evaluated. The ligand-based approach utilized the surface enhanced Raman scattering (SERS) property of the TiO2 NPs as a substrate to enhance the signal of a surface …


Investigating The Accumulation, Sub-Organ Distribution, And Biochemical Effects Of Nanomaterials Using Mass Spectrometry, Kristen Nicole Sikora Dec 2020

Investigating The Accumulation, Sub-Organ Distribution, And Biochemical Effects Of Nanomaterials Using Mass Spectrometry, Kristen Nicole Sikora

Doctoral Dissertations

Gold nanoparticles (AuNPs) are attractive materials for use in various biomedical applications, such as therapeutic delivery, due to their unique chemical properties and modular tunability. Mass spectrometry methods, including laser desorption/ionization mass spectrometry (LDI-MS) and inductively coupled plasma mass spectrometry (ICP-MS) have been successfully used to evaluate the distribution of AuNPs in complex biological systems. As new AuNP-based materials are developed for applications in therapeutic delivery, it is essential to simultaneously develop analytical techniques that can comprehensively assess their behavior in vivo. In this dissertation, novel mass spectrometric methods have been developed and utilized to evaluate the uptake, distribution, …


Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics And Mechanism, Jalal Tavana Dec 2020

Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics And Mechanism, Jalal Tavana

Electronic Theses and Dissertations

This dissertation involves several hydrogenolysis reactions but is mainly focused on hydrodechlorination (HDC) of chlorobenzene (PhCl) and hydrodeoxygenation (HDO) of 2-furancarboxylic acid (FCA). Hydrodechlorination of PhCl has been the subject of research for some time. Here, we used a Pd/C catalyst to study this reaction though rigorous kinetics and mechanistic analyses in a CSTR reactor. The H2/D2 kinetic isotope effect (KIE) experiment revealed that H2 is not involved in a rate controlling step. The kinetics data are in agreement with similar systems reported before and follow a first-order dependence on chlorobenzene, half order for hydrogen and …


An Intramolecular Method For The Formation Of Glycosidic Bonds, Sudeera Nadeeshani Kamburugamuwa Kamburugamuwe Loku Acharige Dec 2020

An Intramolecular Method For The Formation Of Glycosidic Bonds, Sudeera Nadeeshani Kamburugamuwa Kamburugamuwe Loku Acharige

Electronic Theses and Dissertations

The improved understanding of carbohydrate functions in biological systems has increased the demand for well-characterized and pure carbohydrates in biomedical research. Chemical synthesis is the most feasible method to satisfy the scientific demand despite the inherent challenges of the glycosylation reaction. Therefore, it is essential to investigate novel methods for the formation of glycosidic bonds. In this work, an intramolecular method was developed using a thio-methylene-silyl linker to tether a glycosyl donor and acceptor. The glycosylation conditions resulted in the formation of both anomeric isomers with a preference for the inversion pathway, which is inconsistent with an entirely intermolecular glycosylation …


Fluorinated Phthalonitriles And Phthalocyanines: Synthesis And Spectroscopic Properties, Marius Pelmus Dec 2020

Fluorinated Phthalonitriles And Phthalocyanines: Synthesis And Spectroscopic Properties, Marius Pelmus

Seton Hall University Dissertations and Theses (ETDs)

Since their discovery at the beginning of the 20th century, phthalocyanines (Pc) have come a long way; today they are replacing the porphyrins (natural products) in most of their applications. The functionalization of the organic macrocycle, the use of different metals, and the change of the axial ligands resulted in Pc applications in a wide range of fields, ranging from photochemistry, paints, catalysis, to fuel cells and cosmetic products.

In Dr. Gorun’s group was developed a series of electron-deficient Pcs that benefit from a Teflon-like chemical shield, meant also to break the π-π interactions, namely the F64PcM …


Hemithioindigo-Based Photoswitchable Self- Complementary Hydrogen Bond Arrays, Suendues Noori Dec 2020

Hemithioindigo-Based Photoswitchable Self- Complementary Hydrogen Bond Arrays, Suendues Noori

Electronic Thesis and Dissertation Repository

Hydrogen bonded materials are slowly conquering grounds in the literature because of their dynamic features which stem from their reversible interactions. Incorporating the ability for light to chemically modify these interactions provides a unique template for innovative, efficient and self-healing materials. This thesis explores the design, synthesis, and characterization of nine derivatives of a well-known organic compound – hemithioindigo – with dual function; as a photoswitch and a novel self-complementary hydrogen bond array. The supramolecular complexes formed moderate to strong associations (63 M-1 to 1100 M-1) with spontaneous Gibbs free energy values (-10.3 kJ/mol to -17.3 kJ/mol) …


One-Pot Synthesis Of Bicyclic Piperidines From Donor Acceptor Cyclopropanes, David G. Stephens Dec 2020

One-Pot Synthesis Of Bicyclic Piperidines From Donor Acceptor Cyclopropanes, David G. Stephens

Electronic Thesis and Dissertation Repository

The efficient synthesis of heterocyclic compounds is of great importance to organic chemistry. One method for achieving efficiency is through the use and development of one-pot reactions. This thesis describes the planning and development of an extension to the tandem cyclopropane opening Conia-ene reactivity previously reported. A search for a substrate capable of undergoing the reaction was undertaken and the reaction was optimized. The highest yielding conditions tested used catalytic Sc(OTf)3 and superstoichiometric ZnBr2, but other catalyst systems also worked. The optimized reaction conditions tolerated 6-membered rings well in addition to 7-membered rings in some rotationally restricted …


Development Of Multi-Functional Molecular Systems For Applications On Nanomaterial Surfaces, Jun Hyeong Park Dec 2020

Development Of Multi-Functional Molecular Systems For Applications On Nanomaterial Surfaces, Jun Hyeong Park

Electronic Thesis and Dissertation Repository

The glutathione-mediated, retro Michael-type addition reaction is demonstrated to take place at the interface of water-soluble, maleimide-functionalized gold nanoparticles (Maleimide-AuNP). The retro Michael-type addition can be blocked by hydrolyzing the Michael addition thioether adduct at the nanoparticle’s interface. This procedure “locks” the molecule of interest onto the Maleimide-AuNP template, ensuring no loss of the molecular cargo from the nanocarrier. On the other hand, the glutathione-mediated retro Michael-type addition reaction can be exploited for delivering a molecular payload. The Michael donor, 4-mercaptophenylacetic acid was modified with a terminal azide, allowing for addition of cargo through strain-promoted alkyne azide cycloadditions with various …


Synthesis Of Linear Oligo[N]Catenanes Via Orthogonal Metal Templation, Nathan Colley Dec 2020

Synthesis Of Linear Oligo[N]Catenanes Via Orthogonal Metal Templation, Nathan Colley

Arts & Sciences Electronic Theses and Dissertations

No abstract provided.


Electrochemiluminescence Of A Di-Boron Complex, Perovskite And Carbon Quantum Dots, Jonathan M. Wong Dec 2020

Electrochemiluminescence Of A Di-Boron Complex, Perovskite And Carbon Quantum Dots, Jonathan M. Wong

Electronic Thesis and Dissertation Repository

The electrochemiluminescence (ECL) of three novel materials was explored in this thesis. A di-boron complex exhibiting crystallization-induced blue shift emission was detected utilizing photoluminescence. This phenomenon was successfully observed in the annihilation pathway, resulting in crystallization-induced blue shift ECL. The effects of coreactant and crystallization-induced enhancements were distinguished utilizing two testing systems. Undoped and Mn-doped CsPbCl3 perovskites were investigated, as the latter exhibits a dual emissive photoluminescence pathway due to host and dopant emission mechanics. It was discovered that the electrochemiluminescence of Mn-doped CsPbCl3 proceeds through a triplet-triplet annihilation pathway. Furthermore, the relaxation of the electrochemically generated Mn-doped …


Synthesis Of The Oxidative Metabolites Of Di(2-Ethylhexyl) Phthalate And Analysis Of Metabolite Binding With Peroxisome Proliferator-Activated Receptors, Alexis Brooner Dec 2020

Synthesis Of The Oxidative Metabolites Of Di(2-Ethylhexyl) Phthalate And Analysis Of Metabolite Binding With Peroxisome Proliferator-Activated Receptors, Alexis Brooner

Student Research Submissions

Di(2-ethylhexyl) phthalate (DEHP) is a persistent organic pollutant that is added to increase the flexibility of soft plastics, such as polyvinyl chloride (PVC). Since DEHP is not bound to the polymer, it leaches into the environment, leading to human exposure. When DEHP is metabolized by the body, it is cleaved into mono-(2-ethylhexyl) phthalate (MEHP). MEHP is then oxidized to produce the secondary-oxidized metabolites mono-(2-ethyl-5-carboxypentyl)phthalate (5cx-MEPP), mono-(2-ethyl-5-oxohexyl)phthalate (5oxo-MEHP), and mono-[2-(carboxymethyl)hexyl]phthalate (2cx-MMHP). DEHP and its metabolites interact with peroxisome proliferator-activated receptors (PPARs), which can alter lipid metabolism. To synthesize 5cx-MEHP, an enolate alkylation was performed with ethyl butyrate to form ethyl 2-ethyl-6-heptenoate. …


Fabricating Cu2znsns4, Cu2znsn(S,Se)4 And Cuin(S,Se)2 Light-Absorbing Thin Films For Low-Cost Solar Devices., Vaishnavi Raja Dec 2020

Fabricating Cu2znsns4, Cu2znsn(S,Se)4 And Cuin(S,Se)2 Light-Absorbing Thin Films For Low-Cost Solar Devices., Vaishnavi Raja

Electronic Thesis and Dissertation Repository

In this thesis, Cu2ZnSnS4 (CZTS), Cu2ZnSn(S,Se)4 (CZTSSe) and CuIn(S,Se)2 (CISSe) thin-films have been optimized to use as the key light-absorbing and conversion layer for solar cells. CZTS nanocrystals (NCs) were solvothermally synthesized, etched with acetic acid and structurally analyzed using synchrotron spectroscopy. Electrodeposited CZTSSe films showed a non-ideal increase in sulfur with lower selenization temperature and post-process etching. Compositional studies of electrodeposited CISSe films confirmed the decrease in selenium after the acetic acid etching. Through PECMs and other conventional characterization techniques, it was determined that non-etched CZTSSe and CISSe solar devices performed better …


Understanding The Role Of Atom Trapping In The Evolution Of Hydrocarbon Transformation Catalyst Morphology, Griffin Canning Dec 2020

Understanding The Role Of Atom Trapping In The Evolution Of Hydrocarbon Transformation Catalyst Morphology, Griffin Canning

Chemistry and Chemical Biology ETDs

Converting alkanes to other, more chemically and economically valuable molecules requires catalysts that can survive elevated temperatures and highly reducing environments. These environments can cause many metal-nanoparticle based catalysts to sinter rapidly, causing a loss of activity. They must also tolerate the coke formation, as well, since coke can restrict access to active sites by gas phase molecules, thus lowering catalytic activity. While there are routes to improve both the sinter and coke resistance of catalysts, an alternative strategy is to develop a protocol for regenerating the activity of the catalyst in question when coke formation or sintering becomes problematic. …


Synthesis Of Structurally Diverse Molecular Scaffolds Enabled By Protected Oxyallyl Cations, Joshua Andrew Malone Dec 2020

Synthesis Of Structurally Diverse Molecular Scaffolds Enabled By Protected Oxyallyl Cations, Joshua Andrew Malone

LSU Doctoral Dissertations

This dissertation focuses on the synthesis of diverse molecular scaffolds through the use of protected oxyallyl cation intermediates. Chapter One provides background on the generation and applications of oxyallyl and silyloxyallyl cations, while focusing on the direct nucleophilic capture of theses intermediates to generate functionalized ketones and silylenolates. Chapter Two depicts our approach to generate six-membered silyloxyallyl cations through the use of mild Brønsted acid activation. Regioselective nucleophilic capture of these intermediates successfully produced diverse a,a’-substituted silylenol ethers enabled by polar solvent and residual water.

Chapter three details strategies to generate 1,4-dicarbonyl compounds, focusing on the capture of cationic intermediates …