Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Utility Of 1,2,4-Triazoles As Catalysts For Orr In Fuel Cells, Chinmay Nagesh Dabke Aug 2012

Utility Of 1,2,4-Triazoles As Catalysts For Orr In Fuel Cells, Chinmay Nagesh Dabke

Masters Theses

The Oxygen Reduction Reaction (ORR) taking place at the cathode of a fuel cell is catalyzed by Platinum due to its high activity and good stability in the acidic polymer electrolyte membrane fuel cell (PEMFC) environment. Due to its prohibitive cost and limited reserves, it is not practical to use Pt as the catalyst for mass commercialization. By taking inspiration from nature, we have devised a series of catalysts which will help in replacing Platinum at the cathode in commercial fuel cells. To gauge the activity of various ligands, metal salts and carbon surfaces, adsorbed experiments were carried out and …


Asymmetric Intra- And Intermolecular Cyclopropanation By Co(Ii)- Based Metalloradical Catalysis, Xue Xu Jan 2012

Asymmetric Intra- And Intermolecular Cyclopropanation By Co(Ii)- Based Metalloradical Catalysis, Xue Xu

USF Tampa Graduate Theses and Dissertations

Metal-catalyzed cyclopropanation of olefins with diazo reagents has attracted research interest because of its fundamental and practical importance. The resulting cyclopropyl units are recurrent motifs in biologically important molecules and can serve as versatile precursors in organic synthesis. Since they were first introduced in 2004, Co(II) complexes of D2-symmetric chiral amidoporphyrins [Co(D2-Por*)] have emerged as a new class of catalysts for asymmetric cyclopropanation. These metalloradical catalysts have been shown to be highly effective for asymmetric intermolecular cyclopropanation of a broad scope of substrates with different classes of carbene sources, particularly including electron-deficient olefins and acceptor/acceptor-substituted …


Studies Of A Dirhodium Tetraphosphine Catalyst For Hydroformylation And Aldehyde-Water Shift Catalysis, Aaron Rider Barnum Jan 2012

Studies Of A Dirhodium Tetraphosphine Catalyst For Hydroformylation And Aldehyde-Water Shift Catalysis, Aaron Rider Barnum

LSU Doctoral Dissertations

Research into the dirhodium tetraphosphine catalyst precursor [rac-Rh2(nbd)2(et,ph-P4)](BF4)2 shows it is capable of forming a highly active and regioselective hydroformylation catalyst in situ when using an acetone or acetone/water solvent. Hydroformylation experiments (using 1-hexene), FT-IR studies, and acid-base studies were performed to better understand the various complexes of the dirhodium catalyst cycle. These studies lead to the newly proposed catalyst mechanism when performed in an acetone/water solution, using the monocationic [rac-Rh2(H)(µ-CO)2(CO) (et,ph-P4)]+ as the proposed active catalyst complex for hydroformylation. For the conversion of 1-hexene to heptanal, it is capable of performing an initial rate of 30 turnovers per min, …