Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

"The Devil Is In The Details:" Inland Northwest Stakeholders’ Views On Three Forest-Based Bioenergy Scenarios, Soren Newman, Darin Saul, Robert Keefe, Ryan Jacobson, Tamara Laninga, Jillian Moroney Dec 2017

"The Devil Is In The Details:" Inland Northwest Stakeholders’ Views On Three Forest-Based Bioenergy Scenarios, Soren Newman, Darin Saul, Robert Keefe, Ryan Jacobson, Tamara Laninga, Jillian Moroney

University Author Recognition Bibliography: 2017

Public and private initiatives are actively exploring a range of forest-based bioenergy development options in the Inland Northwest of the United States. These efforts are motivated in part by the potential to generate renewable energy while creating a market for forest residues that would facilitate hazardous fuels reduction and provide economic opportunities. Understanding stakeholders’ perspectives is critical to the feasibility and long-term viability of bioenergy projects. This study presents stakeholder perspectives on forest-based bioenergy development strategies for communities in the forested areas of Idaho, western Montana, eastern Washington, and eastern Oregon. We developed three scenarios based on bioenergy initiatives currently …


Validating Sidescan Sonar As A Fish Survey Tool Over Artificial Reefs, Michael A. Bollinger, Richard Kline Nov 2017

Validating Sidescan Sonar As A Fish Survey Tool Over Artificial Reefs, Michael A. Bollinger, Richard Kline

School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

Visual observation methods via SCUBA are commonly used to survey artificial reef fish, although conditions in the Gulf of Mexico often make surveys difficult or even dangerous for divers. In this study, sidescan sonar was used to quantify water-column fish abundance and was compared to the established visual observation methods on SCUBA over four reef sites. Calibrated intensity values measured from sidescan sonar echo returns were used to estimate fish body length and to calculate scaled biomass (g/m2 reef) from a pooled fish length–weight relationship of commonly observed reef fish in the area. Sidescan sonar methods were equivalent to SCUBA …


Linear And Nonlinear Effects Of Temperature And Precipitation On Ecosystem Properties In Tidal Saline Wetlands, Laura C. Feher, Michael J. Osland, Kereen T. Griffith, James B. Grace, Rebecca J. Howard, Camille L. Stagg, Nicholas M. Enwright, Ken W. Krauss, Christopher A. Gabler, Richard H. Day, Kerrylee Rogers Oct 2017

Linear And Nonlinear Effects Of Temperature And Precipitation On Ecosystem Properties In Tidal Saline Wetlands, Laura C. Feher, Michael J. Osland, Kereen T. Griffith, James B. Grace, Rebecca J. Howard, Camille L. Stagg, Nicholas M. Enwright, Ken W. Krauss, Christopher A. Gabler, Richard H. Day, Kerrylee Rogers

School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity …


Linear And Nonlinear Effects Of Temperature And Precipitation On Ecosystem Properties In Tidal Saline Wetlands, Laura C. Feher, Michael J. Osland, Kereen T. Griffith, James B. Grace, Rebecca J. Howard, Camille L. Stagg, Nicholas M. Enwright, Ken W. Krauss, Christopher A. Gabler, Richard H. Day, Kerrylee Rogers Jan 2017

Linear And Nonlinear Effects Of Temperature And Precipitation On Ecosystem Properties In Tidal Saline Wetlands, Laura C. Feher, Michael J. Osland, Kereen T. Griffith, James B. Grace, Rebecca J. Howard, Camille L. Stagg, Nicholas M. Enwright, Ken W. Krauss, Christopher A. Gabler, Richard H. Day, Kerrylee Rogers

School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate‐sensitive ecological transition zones. Here, we used climate‐ and literature‐derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above‐ground productivity …