Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Structure Symmetry Determination And Magnetic Evolution In Sr2Ir1−XRhXO4, Feng Ye, Xiaoping Wang, Christina Hoffmann, Jinchen Wang, Songxue Chi, Masaaki Matsuda, Bryan C. Chakoumakos, Jaime A. Fernandez-Baca, Gang Cao Nov 2015

Structure Symmetry Determination And Magnetic Evolution In Sr2Ir1−XRhXO4, Feng Ye, Xiaoping Wang, Christina Hoffmann, Jinchen Wang, Songxue Chi, Masaaki Matsuda, Bryan C. Chakoumakos, Jaime A. Fernandez-Baca, Gang Cao

Physics and Astronomy Faculty Publications

We use single-crystal neutron diffraction to determine the crystal structure symmetry and the magnetic evolution in the rhodium-doped iridates Sr2Ir1−xRhxO4 (0≤ x ≤ 0.16). Throughout this doping range, the crystal structure retains a tetragonal symmetry (space group I41/a) with two distinct magnetic Ir sites in the unit cell forming staggered IrO6 rotation. Upon Rh doping, the magnetic order is suppressed and the magnetic moment of Ir4+ is reduced from 0.21μB/Ir for x=0 to 0.18μB/Ir for x=0.12. The magnetic structure …


Large Entropy Change Accompanying Two Successive Magnetic Phase Transitions In Tbmn2si2 For Magnetic Refrigeration, Guoxing Li, Jianli Wang, Zhenxiang Cheng, Qing Yon Ren, Chunsheng Fang, S X. Dou Jan 2015

Large Entropy Change Accompanying Two Successive Magnetic Phase Transitions In Tbmn2si2 For Magnetic Refrigeration, Guoxing Li, Jianli Wang, Zhenxiang Cheng, Qing Yon Ren, Chunsheng Fang, S X. Dou

Australian Institute for Innovative Materials - Papers

Structural and magnetic properties in TbMn2Si2 are studied by variable temperature X-ray diffraction, magnetization, electrical resistivity, and heat capacity measurements. TbMn2Si2 undergoes two successive magnetic transitions at around Tc1 = 50 K and Tc2 = 64 K. Tc1 remains almost constant with increasing magnetic field, but Tc2 shifts significantly to higher temperature. Thus, there are two partially overlapping peaks in the temperature dependence of magnetic entropy change, i.e., −ΔSM (T). The different responses of Tc1 and Tc2 to external magnetic field, and the overlapping of −ΔSM …


Strain-Induced Magnetic Phase Transition In Srcoo3−Δ Thin Films, S J. Callori, S Hu, Joel Bertinshaw, Zhilian Yue, S Danilkin, Xiaolin Wang, V Nagarajan, Frank Klose, Jan Seidel, Clemens Ulrich Jan 2015

Strain-Induced Magnetic Phase Transition In Srcoo3−Δ Thin Films, S J. Callori, S Hu, Joel Bertinshaw, Zhilian Yue, S Danilkin, Xiaolin Wang, V Nagarajan, Frank Klose, Jan Seidel, Clemens Ulrich

Australian Institute for Innovative Materials - Papers

It has been well established that both in bulk at ambient pressure and for films under modest strains, cubic SrCoO3−δ (δ<0.2) is a ferromagnetic metal. Recent theoretical work, however, indicates that a magnetic phase transition to an antiferromagnetic structure could occur under large strain accompanied by a metal-insulator transition. We have observed a strain-induced ferromagnetic-to-antiferromagnetic phase transition in SrCoO3−δ films grown on DyScO3 substrates, which provide a large tensile epitaxial strain, as compared to ferromagnetic films under lower tensile strain on SrTiO3 substrates. Magnetometry results demonstrate the existence of antiferromagnetic spin correlations and neutron diffraction experiments provide a direct evidence for a G-type antiferromagnetic structure with Neél temperatures between TN∼135±10K and ∼325±10K, depending on the oxygen content of the samples. Therefore, our data experimentally confirm the predicted strain-induced magnetic phase transition to an antiferromagnetic state for SrCoO3−δ thin films under large epitaxial strain.


Ferroelectric And Magnetic Properties Of Aurivillius Bim+1ti3fem−3o3m+3 Thin Films, Tingting Jia, Hideo Kimura, Zhenxiang Cheng, Hongyang Zhao Jan 2015

Ferroelectric And Magnetic Properties Of Aurivillius Bim+1ti3fem−3o3m+3 Thin Films, Tingting Jia, Hideo Kimura, Zhenxiang Cheng, Hongyang Zhao

Australian Institute for Innovative Materials - Papers

Aurivillius Bim+1Ti3Fem−3O3m+3 (m = 4, 5, 6) thin films have been deposited by a pulsed laser deposition system. The x-ray diffraction patterns indicate the formation of orthorhombic phase. The remanent polarization (2Pr) of Bim+1Ti3Fem−3O3m+3 thin films is decreased with the m-number. Positive-up-negative-down measurements indicate the presence of ferroelectric (FE) polarization in as-obtained thin films. Piezoresponse force microscopy investigations confirm the existence of FE domains and the switchable polarization. Weak magnetic moment is detected in the Aurivillius films at room temperature. The present work …


A Robust Deep Model For Improved Classification Of Ad/Mci Patients, Feng Li, Loc Tran, Kim-Han Thung, Shuiwang Ji, Dinggang Shen, Jiang Li Jan 2015

A Robust Deep Model For Improved Classification Of Ad/Mci Patients, Feng Li, Loc Tran, Kim-Han Thung, Shuiwang Ji, Dinggang Shen, Jiang Li

Electrical & Computer Engineering Faculty Publications

Accurate classification of Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI), plays a critical role in possibly preventing progression of memory impairment and improving quality of life for AD patients. Among many research tasks, it is of a particular interest to identify noninvasive imaging biomarkers for AD diagnosis. In this paper, we present a robust deep learning system to identify different progression stages of AD patients based on MRI and PET scans. We utilized the dropout technique to improve classical deep learning by preventing its weight coadaptation, which is a typical cause of overfitting in deep learning. …


Terahertz Probes Of Magnetic Field Induced Spin Reorientation In Yfeo 3 Single Crystal, Xian Lin, Junjie Jiang, Zuanming Jin, Dongyang Wang, Zhen Tian, Jiaguang Han, Zhenxiang Cheng, Guohong Ma Jan 2015

Terahertz Probes Of Magnetic Field Induced Spin Reorientation In Yfeo 3 Single Crystal, Xian Lin, Junjie Jiang, Zuanming Jin, Dongyang Wang, Zhen Tian, Jiaguang Han, Zhenxiang Cheng, Guohong Ma

Australian Institute for Innovative Materials - Papers

Using the terahertz time-domain spectroscopy, we demonstrate the spin reorientation of a canted antiferromagnetic YFeO3 single crystal, by evaluating the temperature and magnetic field dependence of resonant frequency and amplitude for the quasi-ferromagnetic (FM) and quasi-antiferromagnetic modes (AFM), a deeper insight into the dynamics of spin reorientation in rare-earth orthoferrites is established. Due to the absence of 4f-electrons in Y ion, the spin reorientation of Fe sublattices can only be induced by the applied magnetic field, rather than temperature. In agreement with the theoretical predication, the frequency of FM mode decreases with magnetic field. In addition, an …


Super-Paramagnetic Particles Chemically Bound To Luminescent Diamond: Single Nano-Crystals Probed With Optically Detected Magnetic Resonance, Taras Plakhotnik, Haroon Aman, Shaohua Zhang, Zhen Li Jan 2015

Super-Paramagnetic Particles Chemically Bound To Luminescent Diamond: Single Nano-Crystals Probed With Optically Detected Magnetic Resonance, Taras Plakhotnik, Haroon Aman, Shaohua Zhang, Zhen Li

Australian Institute for Innovative Materials - Papers

We have synthesized novel composite particles made of single-domain nanomagnets chemically bound to nanocrystals of diamond. Optically detected magnetic resonance spectra of nitrogen-vacancy centers in diamond allowed us to estimate the magnetic field of the nanomagnets and to observe the saturation of their magnetization when an external field of a few tens of mT has been applied. The saturation effect is in agreement with the size of the domains measured using transmission electron microscopy and a simple model of magnetization.


Pauli-Limited Effect In The Magnetic Phase Diagram Of Fesexte1−X Thin Films, Jincheng Zhuang, Zhen Li, Xun Xu, Li Wang, Wai Kong Yeoh, X Z. Xing, Zhixiang Shi, Xiaolin Wang, Yi Du, S X. Dou Jan 2015

Pauli-Limited Effect In The Magnetic Phase Diagram Of Fesexte1−X Thin Films, Jincheng Zhuang, Zhen Li, Xun Xu, Li Wang, Wai Kong Yeoh, X Z. Xing, Zhixiang Shi, Xiaolin Wang, Yi Du, S X. Dou

Australian Institute for Innovative Materials - Papers

We present a detailed investigation on the doping dependence of the upper critical fieldHc2(T) of FeSexTe1−xthin films (0.18 ≤ x ≤ 0.90) by measuring the electrical resistivity as a function of magnetic field. The Hc2(T) curves exhibit a downturn behavior with decreasing temperature in all the samples, owing to the Pauli-limited effect (spin paramagnetic effect). The Pauli-limited effect on the upper critical field can be monotonically modulated by variation of the Se/Te composition. Our results show that Te-doping induced disorder and excess Fe atoms give rise to enhancement of the Pauli-limited effect.


Tuneable Magnetic Phase Transitions In Layered Cemn2ge2-Xsix Compounds, M F. Md Din, Jianli Wang, Zhenxiang Cheng, S X. Dou, Shane J. Kennedy, Maxim Avdeev, Stewart J. Campbell Jan 2015

Tuneable Magnetic Phase Transitions In Layered Cemn2ge2-Xsix Compounds, M F. Md Din, Jianli Wang, Zhenxiang Cheng, S X. Dou, Shane J. Kennedy, Maxim Avdeev, Stewart J. Campbell

Australian Institute for Innovative Materials - Papers

The structural and magnetic properties of seven CeMn2Ge2-xSix compounds with x = 0.0-2.0 have been investigated in detail. Substitution of Ge with Si leads to a monotonic decrease of both a and c along with concomitant contraction of the unit cell volume and significant modifications of the magnetic states - a crossover from ferromagnetism at room temperature for Ge-rich compounds to antiferromagnetism for Si-rich compounds. The magnetic phase diagram has been constructed over the full range of CeMn2Ge2-xSix compositions and co-existence of ferromagnetism and antiferromagnetism has been observed in CeMn …