Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Astrophysics and Astronomy

Quasars

Faculty Scholarship

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Galaxy And Mass Assembly (Gama): Low-Redshift Quasars And Inactive Galaxies Have Similar Neighbors, Maria B. Stone, Clare F. Wethers, Roberto De Propris, Jari Kotilainen, Nischal Acharya, Benne W. Holwerda, Jonathan Loveday, Steven Phillipps Apr 2023

Galaxy And Mass Assembly (Gama): Low-Redshift Quasars And Inactive Galaxies Have Similar Neighbors, Maria B. Stone, Clare F. Wethers, Roberto De Propris, Jari Kotilainen, Nischal Acharya, Benne W. Holwerda, Jonathan Loveday, Steven Phillipps

Faculty Scholarship

We explore the properties of galaxies in the proximity (within a ∼2 Mpc radius sphere) of Type I quasars at 0.1 <z <0.35, to check whether and how an active galaxy influences the properties of its neighbors. We further compare these with the properties of neighbors around inactive galaxies of the same mass and redshift within the same volume of space, using the Galaxy and Mass Assembly spectroscopic survey. Our observations reveal no significant difference in properties such as the number of neighbors, morphologies, stellar mass, star formation rates, and star formation history between the neighbors of quasars and those of the comparison sample. This implies that quasar activity in a host galaxy does not significantly affect its neighbors (e.g., via interactions with the jets). Our results suggest that quasar host galaxies do not strongly differ from the average galaxy within the specified mass and redshift range. Additionally, the implication of the relatively minor importance of the environmental effect on and from quasars is that nuclear activity is more likely triggered by internal and secular processes.


Galaxy And Mass Assembly (Gama): The Weak Environmental Dependence Of Quasar Activity At 0.1 < Z < 0.35, Clare F. Wethers, Nischal Acharya, Roberto De Propris, Jari Kotilainen, Ivan K. Baldry, Sarah Brough, Simon P. Driver, Alister W. Graham, Benne Holwerda, Andrew M. Hopkins, Angel R. López-Sánchez, Jonathan Loveday, Steven Phillipps, Kevin A. Pimbblet, Edward Taylor, Lingyu Wang, Angus H. Wright Apr 2022

Galaxy And Mass Assembly (Gama): The Weak Environmental Dependence Of Quasar Activity At 0.1 < Z < 0.35, Clare F. Wethers, Nischal Acharya, Roberto De Propris, Jari Kotilainen, Ivan K. Baldry, Sarah Brough, Simon P. Driver, Alister W. Graham, Benne Holwerda, Andrew M. Hopkins, Angel R. López-Sánchez, Jonathan Loveday, Steven Phillipps, Kevin A. Pimbblet, Edward Taylor, Lingyu Wang, Angus H. Wright

Faculty Scholarship

Understanding the connection between nuclear activity and galaxy environment remains critical in constraining models of galaxy evolution. By exploiting the extensive cataloged data from the Galaxy and Mass Assembly survey, we identify a representative sample of 205 quasars at 0.1 < z < 0.35 and establish a comparison sample of galaxies, closely matched to the quasar sample in terms of both stellar mass and redshift. On scales <1 Mpc, the galaxy number counts and group membership of quasars appear entirely consistent with those of the matched galaxy sample. Despite this, we find that quasars are ∼1.5 times more likely to be classified as the group center, indicating a potential link between quasar activity and cold gas flows or galaxy interactions associated with rich group environments. On scales of ∼a few Mpc, the clustering strengths of both samples are statistically consistent, and beyond 10 Mpc, we find no evidence that quasars trace large-scale structures any more than the galaxy control sample. Both populations are found to prefer intermediate-density sheets and filaments to either very high-density environments or very low-density environments. This weak dependence of quasar activity on galaxy environment supports a paradigm in which quasars represent a phase in the lifetime of all massive galaxies and in which secular processes and a group-centric location are the dominant triggers of quasars at low redshift.