Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Astrophysics and Astronomy

2018

Galaxies: star formation

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Galaxy And Mass Assembly (Gama): The Environmental Dependence Of The Galaxy Main Sequence, L. Wang, P. Norberg, S. Brough, M. J.I. Brown, E. Da Cunha, L. J. Davies, S. P. Driver, Benne W. Holwerda, A. M. Hopkins, M. A. Lara-Lopez, J. Liske, J. Loveday, M. W. Grootes, C. C. Popescu, A. H. Wright Oct 2018

Galaxy And Mass Assembly (Gama): The Environmental Dependence Of The Galaxy Main Sequence, L. Wang, P. Norberg, S. Brough, M. J.I. Brown, E. Da Cunha, L. J. Davies, S. P. Driver, Benne W. Holwerda, A. M. Hopkins, M. A. Lara-Lopez, J. Liske, J. Loveday, M. W. Grootes, C. C. Popescu, A. H. Wright

Faculty Scholarship

Aims: We aim to investigate if the environment (characterised by the host dark matter halo mass) plays any role in shaping the galaxy star formation main sequence (MS). Methods: The Galaxy and Mass Assembly project (GAMA) combines a spectroscopic survey with photometric information in 21 bands from the far-ultraviolet (FUV) to the far-infrared (FIR). Stellar masses and dust-corrected star-formation rates (SFR) are derived from spectral energy distribution (SED) modelling using MAGPHYS. We use the GAMA galaxy group catalogue to examine the variation of the fraction of star-forming galaxies (SFG) and properties of the MS with respect to the environment. Results: …


Galaxy And Mass Assembly (Gama): The Signatures Of Galaxy Interactions As Viewed From Small-Scale Galaxy Clustering, M. L.P. Gunawardhana, P. Norberg, I. Zehavi, D. J. Farrow, J. Loveday, A. M. Hopkins, L. J.M. Davies, L. Wang, M. Alpaslan, J. Bland-Hawthorn, S. Brough, Benne W. Holwerda, M. S. Owers, A. H. Wright Sep 2018

Galaxy And Mass Assembly (Gama): The Signatures Of Galaxy Interactions As Viewed From Small-Scale Galaxy Clustering, M. L.P. Gunawardhana, P. Norberg, I. Zehavi, D. J. Farrow, J. Loveday, A. M. Hopkins, L. J.M. Davies, L. Wang, M. Alpaslan, J. Bland-Hawthorn, S. Brough, Benne W. Holwerda, M. S. Owers, A. H. Wright

Faculty Scholarship

Statistical studies of galaxy-galaxy interactions often utilize net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable time-scale of their interaction. In this study, we use two-point auto-, cross-, and mark-correlation functions to investigate the extent to which small-scale clustering properties of star-forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Ha star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering at small …


Galaxy And Mass Assembly (Gama): Variation In Galaxy Structure Across The Green Valley, Lee S. Kelvin, Malcolm N. Bremer, Steven Phillipps, Philip A. James, Luke J.M. Davies, Roberto De Propris, Amanda J. Moffett, Susan M. Percival, Ivan K. Baldry, Chris A. Collins, Mehmet Alpaslan, Joss Bland-Hawthorn, Sarah Brough, Michelle Cluver, Simon P. Driver, Abdolhosein Hashemizadeh, Benne W. Holwerda, Jarkko Laine, Maritza A. Lara-Lopez, Jochen Liske, Witold Maciejewski, Nicola R. Napolitano, Samantha J. Penny, Cristina C. Popescu, Anne E. Sansom, Will Sutherland, Edward N. Taylor, Eelco Van Kampen, Lingyu Wang Jul 2018

Galaxy And Mass Assembly (Gama): Variation In Galaxy Structure Across The Green Valley, Lee S. Kelvin, Malcolm N. Bremer, Steven Phillipps, Philip A. James, Luke J.M. Davies, Roberto De Propris, Amanda J. Moffett, Susan M. Percival, Ivan K. Baldry, Chris A. Collins, Mehmet Alpaslan, Joss Bland-Hawthorn, Sarah Brough, Michelle Cluver, Simon P. Driver, Abdolhosein Hashemizadeh, Benne W. Holwerda, Jarkko Laine, Maritza A. Lara-Lopez, Jochen Liske, Witold Maciejewski, Nicola R. Napolitano, Samantha J. Penny, Cristina C. Popescu, Anne E. Sansom, Will Sutherland, Edward N. Taylor, Eelco Van Kampen, Lingyu Wang

Faculty Scholarship

Using a sample of 472 local Universe (z < 0.06) galaxies in the stellar mass range 10.25 < logM*/M⊙ < 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is subdivided into red, green, and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using Kilo- Degree Survey (KiDS) and Visible and Infrared Survey Telescope for Astronomy (VISTA) Kilo-Degree Infrared Galaxy Survey (VIKING) derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells, and signs of merger activity for all systems. We find a significant surplus of rings (2.3s) and lenses (2.9s) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3s relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ~44 per cent which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ~20-30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0s surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley.


Galaxy And Mass Assembly (Gama): Morphological Transformation Of Galaxies Across The Green Valley, M. N. Bremer, S. Phillipps, S. Kelvin, R. De Propris, Rebecca Kennedy, Amanda J. Moffett, S. Bamford, L. J.M. Davies, S. P. Driver, B. Häußler, Benne W. Holwerda, A. Hopkins, P. A. James, J. Liske, S. Percival, N. Taylor May 2018

Galaxy And Mass Assembly (Gama): Morphological Transformation Of Galaxies Across The Green Valley, M. N. Bremer, S. Phillipps, S. Kelvin, R. De Propris, Rebecca Kennedy, Amanda J. Moffett, S. Bamford, L. J.M. Davies, S. P. Driver, B. Häußler, Benne W. Holwerda, A. Hopkins, P. A. James, J. Liske, S. Percival, N. Taylor

Faculty Scholarship

We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and on to the red sequence. We select Galaxy And Mass Assembly (GAMA) survey galaxies with 10.25 < log(M*/Mo˙) < 10.75 and z < 0.2 classified according to their intrinsic u* - r* colour. From single component Śersic fits, we find that the stellar mass-sensitive K-band profiles of red and green galaxy populations are very similar while g-band profiles indicate more disc-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disc components and that the blue to red evolution is driven by colour change in the disc. Together, these strongly suggest that galaxies evolve from blue to red through secular disc fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical time-scale for traversing the green valley ~1-2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a role in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disc galaxies that are insufficiently supplied with gas to maintain previous levels of disc star formation, eventually attaining passive colours. No single event is needed to quench their star formation.


Galaxy And Mass Assembly (Gama): Blue Spheroids Within 87 Mpc, Smriti Mahajan, Michael J. Drinkwater, S. Driver, A. M. Hopkins, Alister W. Graham, S. Brough, Michael J.I. Brown, Benne W. Holwerda, Matt S. Owers, Kevin A. Pimbblet Mar 2018

Galaxy And Mass Assembly (Gama): Blue Spheroids Within 87 Mpc, Smriti Mahajan, Michael J. Drinkwater, S. Driver, A. M. Hopkins, Alister W. Graham, S. Brough, Michael J.I. Brown, Benne W. Holwerda, Matt S. Owers, Kevin A. Pimbblet

Faculty Scholarship

In this paper, we test if nearby blue spheroid (BSph) galaxies may become the progenitors of star-forming spiral galaxies or passively evolving elliptical galaxies. Our sample comprises 428 galaxies of various morphologies in the redshift range 0.002 < Ζ < 0.02 (8-87 Mpc) with panchromatic data from the Galaxy and Mass Assembly survey. We find that BSph galaxies are structurally (mean effective surface brightness, effective radius) very similar to their passively evolving red counterparts. However, their star formation and other properties such as colour, age, and metallicity are more like star-forming spirals than spheroids (ellipticals and lenticulars). We show that BSph galaxies are statistically distinguishable from other spheroids as well as spirals in the multidimensional space mapped by luminosity-weighted age, metallicity, dust mass, and specific star formation rate. We use HI data to reveal that some of the BSphs are (further) developing their discs, hence their blue colours. They may eventually become spiral galaxies - if sufficient gas accretion occurs - or more likely fade into low-mass red galaxies.


Galaxy And Mass Assembly (Gama): The Mechanisms For Quiescent Galaxy Formation At Z < 1, K. Rowlands, V. Wild, N. Bourne, M. Bremer, S. Brough, S. P. Driver, A. M. Hopkins, M. S. Owers, S. Phillipps, K. Pimbblet, A. E. Sansom, L. Wang, M. Alpaslan, J. Bland-Hawthorn, M. Colless, Benne W. Holwerda, E. N. Taylor Jan 2018

Galaxy And Mass Assembly (Gama): The Mechanisms For Quiescent Galaxy Formation At Z < 1, K. Rowlands, V. Wild, N. Bourne, M. Bremer, S. Brough, S. P. Driver, A. M. Hopkins, M. S. Owers, S. Phillipps, K. Pimbblet, A. E. Sansom, L. Wang, M. Alpaslan, J. Bland-Hawthorn, M. Colless, Benne W. Holwerda, E. N. Taylor

Faculty Scholarship

One key problem in astrophysics is understanding how and why galaxies switch off their star formation, building the quiescent population that we observe in the local Universe. From the Galaxy And Mass Assembly and VIsible MultiObject Spectrograph Public Extragalactic Redshift surveys, we use spectroscopic indices to select quiescent and candidate transition galaxies. We identify potentially rapidly transitioning post-starburst (PSB) galaxies and slower transitioning green-valley galaxies. Over the last 8Gyr, the quiescent population has grown more slowly in number density at high masses (M* > 1011M⊙) than at intermediate masses (M* > 1010.6M⊙). There is evolution in both the PSB and green-valley stellar …