Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

The Extended Planetary Nebula Spectrograph (Epn.S) Early-Type Galaxy Survey: The Kinematic Diversity Of Stellar Halos And The Relation Between Halo Transition Scale And Stellar Mass, C. Pulsoni, O. Gerhard, M. Arnaboldi, L. Coccato, A. Longobardi, N. Napolitano, E. Moylan, C. Narayan, V. Gupta, A. Burkert, M. Capaccioli, A. Chies-Santos, A. Cortesi, K. Freeman, K. Kuijken, M. Merrifield, Aaron Romanowsky, C. Tortora Oct 2018

The Extended Planetary Nebula Spectrograph (Epn.S) Early-Type Galaxy Survey: The Kinematic Diversity Of Stellar Halos And The Relation Between Halo Transition Scale And Stellar Mass, C. Pulsoni, O. Gerhard, M. Arnaboldi, L. Coccato, A. Longobardi, N. Napolitano, E. Moylan, C. Narayan, V. Gupta, A. Burkert, M. Capaccioli, A. Chies-Santos, A. Cortesi, K. Freeman, K. Kuijken, M. Merrifield, Aaron Romanowsky, C. Tortora

Faculty Research, Scholarly, and Creative Activity

Context. In the hierarchical two-phase formation scenario, the halos of early type galaxies (ETGs) are expected to have different physical properties from the galaxies’ central regions.Aims. The ePN.S survey characterizes the kinematic properties of ETG halos using planetary nebulae (PNe) as tracers, overcoming the limitations of absorption line spectroscopy at low surface brightness.Methods. We present two-dimensional velocity and velocity dispersion fields for 33 ETGs, including fast (FRs) and slow rotators (SRs). The velocity fields were reconstructed from the measured PN velocities using an adaptive kernel procedure validated with simulations, and extend to a median of 5.6 effective radii (Re). We …


Wide-Field Kinematics Of Globular Clusters In The Leo I Group (Corrigendum), G. Bergond, S. Zepf, Aaron Romanowsky, R. Sharples, K. Rhode Oct 2018

Wide-Field Kinematics Of Globular Clusters In The Leo I Group (Corrigendum), G. Bergond, S. Zepf, Aaron Romanowsky, R. Sharples, K. Rhode

Faculty Publications

No abstract provided.


Galaxy And Mass Assembly (Gama): The Environmental Dependence Of The Galaxy Main Sequence, L. Wang, P. Norberg, S. Brough, M. J.I. Brown, E. Da Cunha, L. J. Davies, S. P. Driver, Benne W. Holwerda, A. M. Hopkins, M. A. Lara-Lopez, J. Liske, J. Loveday, M. W. Grootes, C. C. Popescu, A. H. Wright Oct 2018

Galaxy And Mass Assembly (Gama): The Environmental Dependence Of The Galaxy Main Sequence, L. Wang, P. Norberg, S. Brough, M. J.I. Brown, E. Da Cunha, L. J. Davies, S. P. Driver, Benne W. Holwerda, A. M. Hopkins, M. A. Lara-Lopez, J. Liske, J. Loveday, M. W. Grootes, C. C. Popescu, A. H. Wright

Faculty Scholarship

Aims: We aim to investigate if the environment (characterised by the host dark matter halo mass) plays any role in shaping the galaxy star formation main sequence (MS). Methods: The Galaxy and Mass Assembly project (GAMA) combines a spectroscopic survey with photometric information in 21 bands from the far-ultraviolet (FUV) to the far-infrared (FIR). Stellar masses and dust-corrected star-formation rates (SFR) are derived from spectral energy distribution (SED) modelling using MAGPHYS. We use the GAMA galaxy group catalogue to examine the variation of the fraction of star-forming galaxies (SFG) and properties of the MS with respect to the environment. Results: …


The Sluggs Survey: The Inner Dark Matter Density Slope Of The Massive Elliptical Galaxy Ngc 1407, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Alexa Villaume, Duncan Forbes, Jay Strader, Adebusola Alabi, Sabine Bellstedt Aug 2018

The Sluggs Survey: The Inner Dark Matter Density Slope Of The Massive Elliptical Galaxy Ngc 1407, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Alexa Villaume, Duncan Forbes, Jay Strader, Adebusola Alabi, Sabine Bellstedt

Faculty Publications

We investigate the dark matter density profile of the massive elliptical galaxy, NGC 1407, by constructing spherically symmetric Jeans models of its field star and globular cluster systems. Two major challenges in such models are the degeneracy between the stellar mass and the dark matter halo profiles, and the degeneracy between the orbital anisotropy of the tracer population and the total mass causing the observed motions. We address the first issue by using new measurements of the mass-to-light ratio profile from stellar population constraints that include a radially varying initial mass function. To mitigate the mass–anisotropy degeneracy, we make use …


A Deficit Of Dark Matter From Jeans Modeling Of The Ultra-Diffuse Galaxy Ngc 1052-Df2, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Roberto Abraham, Yotam Cohen, Shany Danieli Aug 2018

A Deficit Of Dark Matter From Jeans Modeling Of The Ultra-Diffuse Galaxy Ngc 1052-Df2, Asher Wasserman, Aaron Romanowsky, Jean Brodie, Pieter Van Dokkum, Charlie Conroy, Roberto Abraham, Yotam Cohen, Shany Danieli

Faculty Publications

The discovery of the ultra-diffuse galaxy NGC 1052-DF2 and its peculiar population of star clusters has raised new questions about the connections between galaxies and dark matter (DM) halos at the extremes of galaxy formation. In light of debates over the measured velocity dispersion of its star clusters and the associated mass estimate, we constrain mass models of DF2 using its observed kinematics with a range of priors on the halo mass. Models in which the galaxy obeys a standard stellar-halo mass relation are in tension with the data and also require a large central density core. Better fits are …