Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

New Promise For Electron Bulk Energization In Solar Flares: Preferential Fermi Acceleration Of Electrons Over Protons In Reconnection-Driven Magnetohydrodynamic Turbulence, Ted La Rosa, Ronald L. Moore, James A. Miller, Steven N. Shore Aug 1996

New Promise For Electron Bulk Energization In Solar Flares: Preferential Fermi Acceleration Of Electrons Over Protons In Reconnection-Driven Magnetohydrodynamic Turbulence, Ted La Rosa, Ronald L. Moore, James A. Miller, Steven N. Shore

Faculty and Research Publications

The hard X-ray luminosity of impulsive solar flares indicates that electrons in the low corona are bulk energized to energies of order 25 keV. LaRosa & Moore pointed out that the required bulk energization could be produced by cascading MHD turbulence generated by Alfvénic outflows from sites of strongly driven reconnection. LaRosa, Moore, & Shore proposed that the compressive component of the cascading turbulence dissipates into the electrons via Fermi acceleration. However, for this to be a viable electron bulk energization mechanism, the rate of proton energization by the same turbulence cannot exceed the electron energization rate. In this paper …


Stochastic Electron Acceleration By Cascading Fast Mode Waves In Impulsive Solar Flares, James A. Miller, Ted N. La Rosa, Ronald L. Moore Apr 1996

Stochastic Electron Acceleration By Cascading Fast Mode Waves In Impulsive Solar Flares, James A. Miller, Ted N. La Rosa, Ronald L. Moore

Faculty and Research Publications

We present a model for the acceleration of electrons from thermal to ultrarelativistic energies during an energy release fragment in an impulsive solar flare. Long-wavelength low-amplitude fast mode waves are assumed to be generated during the initial flare energy release (by, for example, large-scale restructuring of the magnetic field). These waves nonlinearly cascade to higher wavenumbers and eventually reach the dissipation range, whereupon they are transit-time damped by electrons in the tail of the thermal distribution. The electrons, in turn, are energized out of the tail and into substantially higher energies. We find that for turbulence energy densities much smaller …