Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Astrophysics and Astronomy

ETSU Faculty Works

Stars: massive

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Variability In X-Ray Line Ratios In Helium-Like Ions Of Massive Stars: The Wind-Driven Case, Richard Ignace, Z. Damrau, K. T. Hole May 2019

Variability In X-Ray Line Ratios In Helium-Like Ions Of Massive Stars: The Wind-Driven Case, Richard Ignace, Z. Damrau, K. T. Hole

ETSU Faculty Works

Context. High spectral resolution and long exposure times are providing unprecedented levels of data quality of massive stars at X-ray wavelengths.

Aims. A key diagnostic of the X-ray emitting plasma are the fir lines for He-like triplets. In particular, owing to radiative pumping effects, the forbidden-to-intercombination line luminosity ratio, R = fi, can be used to determine the proximity of the hot plasma to the UV-bright photospheres of massive stars. Moreover, the era of large observing programs additionally allows for investigation of line variability.

Methods. This contribution is the second to explore how variability in the line …


On The Binary Nature Of Massive Blue Hypergiants: High-Resolution X-Ray Spectroscopy Suggests That Cyg Ob2 12 Is A Colliding Wind Binary - Iopscience, Lidia M. Oskinova, David P. Huenemoerder, Wolf-Rainer Hamann, Tomer Shenar, A. A.C. Sander, Richard Ignace, H. Todt, R. Hainich Aug 2017

On The Binary Nature Of Massive Blue Hypergiants: High-Resolution X-Ray Spectroscopy Suggests That Cyg Ob2 12 Is A Colliding Wind Binary - Iopscience, Lidia M. Oskinova, David P. Huenemoerder, Wolf-Rainer Hamann, Tomer Shenar, A. A.C. Sander, Richard Ignace, H. Todt, R. Hainich

ETSU Faculty Works

The blue hypergiant Cyg OB2 12 (B3Ia+) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xivand Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere …


On The Absence Of Non-Thermal X-Ray Emission Around Runaway O Stars, Jesus A. Toalá, Lidia M. Oskinova, Richard Ignace Apr 2017

On The Absence Of Non-Thermal X-Ray Emission Around Runaway O Stars, Jesus A. Toalá, Lidia M. Oskinova, Richard Ignace

ETSU Faculty Works

Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ-ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations of …


The Mimes Survey Of Magnetism In Massive Stars: Introduction And Overview, G. A. Wade, C. Neiner, E. Alecian, H. H. Grunhunt, V. Petit, B. Batz, D. A. Bohlender, D. H. Cohen, H. F. Henrichs, O. Kochukhov, J. D. Landstreet, N. Manset, F. Martins, S. Mathis, M. E. Oksala, S. P. Owocki, Th. Rivinius, M. E. Schultz, J. O. Sundqvist, R. H.D. Townsend, A. Doula, J. C. Bouret, J. Braithwaite, M. Briquet, A. C. Carciofi, A. David-Uraz, C. P. Folsom, A. W. Fullerton, B. Leroy, W. L.F. Marcolino, A. F.J. Moffat, Y. Naze, N. St Louis, M. Auriere, S. Bagnulo, J. D. Bailey, R. H. Barba, A. Blazere, T. Bohm, C. Catala, J-F Donati, L. Ferrario, D. Harrington, I. D. Howarth, Richard Ignace, L. Kaper, T. Luftinger, R. Prinja, J. S. Vink, W. W. Weiss, I. Yakunin Dec 2015

The Mimes Survey Of Magnetism In Massive Stars: Introduction And Overview, G. A. Wade, C. Neiner, E. Alecian, H. H. Grunhunt, V. Petit, B. Batz, D. A. Bohlender, D. H. Cohen, H. F. Henrichs, O. Kochukhov, J. D. Landstreet, N. Manset, F. Martins, S. Mathis, M. E. Oksala, S. P. Owocki, Th. Rivinius, M. E. Schultz, J. O. Sundqvist, R. H.D. Townsend, A. Doula, J. C. Bouret, J. Braithwaite, M. Briquet, A. C. Carciofi, A. David-Uraz, C. P. Folsom, A. W. Fullerton, B. Leroy, W. L.F. Marcolino, A. F.J. Moffat, Y. Naze, N. St Louis, M. Auriere, S. Bagnulo, J. D. Bailey, R. H. Barba, A. Blazere, T. Bohm, C. Catala, J-F Donati, L. Ferrario, D. Harrington, I. D. Howarth, Richard Ignace, L. Kaper, T. Luftinger, R. Prinja, J. S. Vink, W. W. Weiss, I. Yakunin

ETSU Faculty Works

The MiMeS (Magnetism in Massive Stars) project is a large-scale, high-resolution, sensitive spectropolarimetric investigation of the magnetic properties of O- and early B-type stars. Initiated in 2008 and completed in 2013, the project was supported by three Large Program allocations, as well as various programmes initiated by independent principal investigators, and archival resources. Ultimately, over 4800 circularly polarized spectra of 560 O and B stars were collected with the instruments ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) at the Canada–France–Hawaii Telescope, Narval at the Télescope Bernard Lyot and HARPSpol at the European Southern Observatory La Silla 3.6 m …


Probing Wolf–Rayet Winds: Chandra/Hetg X-Ray Spectra Of Wr 6, David P. Huenemoerder, K. G. Gayley, Wolf-Rainer Hamann, Richard Ignace, J. S. Nichols, Lidia M. Oskinova, A. M.T. Pollock, Nobert S. Schulz, Tomer Shenar Jul 2015

Probing Wolf–Rayet Winds: Chandra/Hetg X-Ray Spectra Of Wr 6, David P. Huenemoerder, K. G. Gayley, Wolf-Rainer Hamann, Richard Ignace, J. S. Nichols, Lidia M. Oskinova, A. M.T. Pollock, Nobert S. Schulz, Tomer Shenar

ETSU Faculty Works

With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of …