Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Variability In X-Ray Line Ratios In Helium-Like Ions Of Massive Stars: The Wind-Driven Case, Richard Ignace, Z. Damrau, K. T. Hole May 2019

Variability In X-Ray Line Ratios In Helium-Like Ions Of Massive Stars: The Wind-Driven Case, Richard Ignace, Z. Damrau, K. T. Hole

ETSU Faculty Works

Context. High spectral resolution and long exposure times are providing unprecedented levels of data quality of massive stars at X-ray wavelengths.

Aims. A key diagnostic of the X-ray emitting plasma are the fir lines for He-like triplets. In particular, owing to radiative pumping effects, the forbidden-to-intercombination line luminosity ratio, R = fi, can be used to determine the proximity of the hot plasma to the UV-bright photospheres of massive stars. Moreover, the era of large observing programs additionally allows for investigation of line variability.

Methods. This contribution is the second to explore how variability in the line …


Coordinated Uv And X-Ray Spectroscopic Observations Of The O-Type Giant Ξ Per: The Connection Between X-Rays And Large-Scale Wind Structure, Derek Massa, Lidi Oskinova, Raman Prinja, Richard Ignace Mar 2019

Coordinated Uv And X-Ray Spectroscopic Observations Of The O-Type Giant Ξ Per: The Connection Between X-Rays And Large-Scale Wind Structure, Derek Massa, Lidi Oskinova, Raman Prinja, Richard Ignace

ETSU Faculty Works

We present new, contemporaneous Hubble Space Telescope STIS and XMM-Newton observations of the O7 III(n)((f)) star ξ Per. We supplement the new data with archival IUE spectra, to analyze the variability of the wind lines and X-ray flux of ξ Per. The variable wind of this star is known to have a 2.086-day periodicity. We use a simple, heuristic spot model that fits the low-velocity (near-surface) IUE wind line variability very well, to demonstrate that the low-velocity absorption in the new STIS spectra of N iv λ1718 and Si iv λ1402 vary with the same 2.086-day period. It …


The Polarization Mode Of The Auroral Radio Emission From The Early-Type Star Hd 142301, P. Leto, C. Trigilio, Lidi M. Oskinova, Richard Ignace, C. S. Buemi, G. Umana, F. Cavallaro, A. Ingallinera, F. Bufano, N. M. Phillips, C. Agliozzo, L. Cerrigone, H. Todt, S. Riggi, F. Leone Jan 2019

The Polarization Mode Of The Auroral Radio Emission From The Early-Type Star Hd 142301, P. Leto, C. Trigilio, Lidi M. Oskinova, Richard Ignace, C. S. Buemi, G. Umana, F. Cavallaro, A. Ingallinera, F. Bufano, N. M. Phillips, C. Agliozzo, L. Cerrigone, H. Todt, S. Riggi, F. Leone

ETSU Faculty Works

We report the detection of the auroral radio emission from the early-type magnetic star HD 142301. New VLA observations of HD 142301 detected highly polarized amplified emission occurring at fixed stellar orientations. The coherent emission mechanism responsible for the stellar auroral radio emission amplifies the radiation within a narrow beam, making the star where this phenomenon occurs similar to a radio lighthouse. The elementary emission process responsible for the auroral radiation mainly amplifies one of the two magneto-ionic modes of the electromagnetic wave. This explains why the auroral pulses are highly circularly polarized. The auroral radio emission of HD 142301 …


Asymmetric Shapes Of Radio Recombination Lines From Ionized Stellar Winds, Richard Ignace Jan 2019

Asymmetric Shapes Of Radio Recombination Lines From Ionized Stellar Winds, Richard Ignace

ETSU Faculty Works

Recombination line profile shapes are derived for ionized spherical stellar winds at radio wavelengths. It is assumed that the wind is optically thick owing to free-free opacity. Emission lines of arbitrary optical depth are obtained assuming that the free-free photosphere forms in the outer, constant expansion portion of the wind. Previous works have derived analytic results for isothermal winds when the line and continuum source functions are equal. Here, semi-analytic results are derived for unequal source functions to reveal that line shapes can be asymmetric about line center. A parameter study is presented and applications discussed.