Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Astrophysics and Astronomy

University of Nevada, Las Vegas

Opacity

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Global 3d Radiation Hydrodynamic Simulations Of Proto-Jupiter’S Convective Envelope, Zhaohuan Zhu, Yan-Fei Jiang, Hans Baehr, Andrew N. Youdin, Philip J. Armitage, Rebecca G. Martin Nov 2021

Global 3d Radiation Hydrodynamic Simulations Of Proto-Jupiter’S Convective Envelope, Zhaohuan Zhu, Yan-Fei Jiang, Hans Baehr, Andrew N. Youdin, Philip J. Armitage, Rebecca G. Martin

Physics & Astronomy Faculty Research

The core accretion model of giant planet formation has been challenged by the discovery of recycling flows between the planetary envelope and the disc that can slow or stall envelope accretion. We carry out 3D radiation hydrodynamic simulations with an updated opacity compilation to model the proto-Jupiter’s envelope. To isolate the 3D effects of convection and recycling, we simulate both isolated spherical envelopes and envelopes embedded in discs. The envelopes are heated at given rates to achieve steady states, enabling comparisons with 1D models. We vary envelope properties to obtain both radiative and convective solutions. Using a passive scalar, we …


One Solution To The Mass Budget Problem For Planet Formation: Optically Thick Disks With Dust Scattering, Zhaohuan Zhu, Shangjia Zhang, Yan-Fei Jiang, Akimasa Kataoka, Tilman Birnstiel, Cornelis P. Dullemond, Sean M. Andrews, Jane Huang, Laura M. Perez, John M. Carpenter, Xue-Ning Bai, David J. Wilner, Luca Ricci May 2019

One Solution To The Mass Budget Problem For Planet Formation: Optically Thick Disks With Dust Scattering, Zhaohuan Zhu, Shangjia Zhang, Yan-Fei Jiang, Akimasa Kataoka, Tilman Birnstiel, Cornelis P. Dullemond, Sean M. Andrews, Jane Huang, Laura M. Perez, John M. Carpenter, Xue-Ning Bai, David J. Wilner, Luca Ricci

Physics & Astronomy Faculty Research

Atacama Large Millimeter Array (ALMA) surveys have suggested that the dust in Class II disks may not be enough to explain the averaged solid mass in exoplanets, under the assumption that the mm disk continuum emission is optically thin. This optically thin assumption seems to be supported by recent Disk Substructures at High Angular Resolution Project (DSHARP) observations where the measured optical depths are mostly less than one. However, we point out that dust scattering can considerably reduce the emission from an optically thick region. If that scattering is ignored, an optically thick disk with scattering can be misidentified as …


The Disk Substructures At High Angular Resolution Project (Dsharp). V. Interpreting Alma Maps Of Protoplanetary Disks In Terms Of A Dust Model, Tilman Birnstiel, Cornelis P. Dullemond, Zhaohuan Zhu, Sean M. Andrews, Xue-Ning Bai, David J. Wilner, John M. Carpenter, Jane Huang, Andrea Isella, Myriam Benisty, Laura M. Pérez, Shangjia Zhang Dec 2018

The Disk Substructures At High Angular Resolution Project (Dsharp). V. Interpreting Alma Maps Of Protoplanetary Disks In Terms Of A Dust Model, Tilman Birnstiel, Cornelis P. Dullemond, Zhaohuan Zhu, Sean M. Andrews, Xue-Ning Bai, David J. Wilner, John M. Carpenter, Jane Huang, Andrea Isella, Myriam Benisty, Laura M. Pérez, Shangjia Zhang

Physics & Astronomy Faculty Research

The Disk Substructures at High Angular Resolution Project (DSHARP) is the largest homogeneous high-resolution (~0 035, or ~5 au) disk continuum imaging survey with the Atacama Large Millimeter/submillimeter Array (ALMA) so far. In the coming years, many more disks will be mapped with ALMA at similar resolution. Interpreting the results in terms of the properties and quantities of the emitting dusty material is, however, a very non-trivial task. This is in part due to the uncertainty in the dust opacities, an uncertainty that is not likely to be resolved any time soon. It is also partly due to the fact …


Photospheric Radius Evolution Of Homologous Explosions, Liang-Duan Liu, Bing Zhang, Ling-Jun Wang, Zi-Gao Dai Nov 2018

Photospheric Radius Evolution Of Homologous Explosions, Liang-Duan Liu, Bing Zhang, Ling-Jun Wang, Zi-Gao Dai

Physics & Astronomy Faculty Research

Recent wide-field surveys discovered new types of peculiar optical transients that showed diverse behaviors of the evolution of photospheric properties. We develop a general theory of homologous explosions with constant opacity, paying special attention to the evolution of the photospheric radius R ph. We find that regardless of the density distribution profile, R ph always increases early on and decreases at late times. This result does not depend on the radiation and cooling processes inside the ejecta. The general rising/falling behavior of R ph can be used to quickly diagnose whether the source originates from a supernova-like explosion. The shape …