Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Reproduction Of Twentieth Century Intradecadal To Multidecadal Surface Temperature Variability In Radiatively Forced Coupled Climate Models, Patrick T. Brown, Eugene C. Cordero, Steven A. Mauget Jun 2012

Reproduction Of Twentieth Century Intradecadal To Multidecadal Surface Temperature Variability In Radiatively Forced Coupled Climate Models, Patrick T. Brown, Eugene C. Cordero, Steven A. Mauget

Eugene C. Cordero

[1] Coupled Model Intercomparison Project 3 simulations that included time-varying radiative forcings were ranked according to their ability to consistently reproduce twentieth century intradecadal to multidecadal (IMD) surface temperature variability at the 5° by 5° spatial scale. IMD variability was identified using the running Mann-Whitney Z method. Model rankings were given context by comparing the IMD variability in preindustrial control runs to observations and by contrasting the IMD variability among the ensemble members within each model. These experiments confirmed that the inclusion of time-varying external forcings brought simulations into closer agreement with observations. Additionally, they illustrated that the magnitude of …


Evaluating Modeled Intra- To Multidecadal Climate Variability Using Running Mann–Whitney Z Statistics, Steven A. Mauget, Eugene C. Cordero, Patrick T. Brown Mar 2012

Evaluating Modeled Intra- To Multidecadal Climate Variability Using Running Mann–Whitney Z Statistics, Steven A. Mauget, Eugene C. Cordero, Patrick T. Brown

Eugene C. Cordero

An analysis method previously used to detect observed intra- to multidecadal (IMD) climate regimes was adapted to compare observed and modeled IMD climate variations. Pending the availability of the more appropriate phase 5 Coupled Model Intercomparison Project (CMIP-5) simulations, the method is demonstrated using CMIP-3 model simulations. Although the CMIP-3 experimental design will almost certainly prevent these model runs from reproducing features of historical IMD climate variability, these simulations allow for the demonstration of the method and illustrate how the models and observations disagree. This method samples a time series’s data rankings over moving time windows, converts those ranking sets …