Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Early Rayleigh-Scatter Lidar Temperature Measurements From The Lower Thermosphere, Leda Sox, Vincent B. Wickwar May 2015

Early Rayleigh-Scatter Lidar Temperature Measurements From The Lower Thermosphere, Leda Sox, Vincent B. Wickwar

Leda Sox

Rayleigh-scatter lidar observations were made on many clear nights at the Atmospheric Lidar Observatory (ALO) at Utah State University (USU) from 1993 to 2004 in the altitude range 45–90 km. An upgraded facility, 66 times more sensitive, has been brought on line. It has resulted in temperature measurements with maximum altitudes that extend into new territory—the lower thermosphere. All-night temperature averages have been recorded up to an altitude of 114 km. Temperatures from each month, starting in June 2014, are presented and discussed. They are compared to each other, to the ALO-USU climatology from the original lidar, and to temperatures …


Midlatitude Mesospheric Temperature Anomalies During Major Ssw Events As Observed With Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Chad Fish, Josh P. Herron Jun 2014

Midlatitude Mesospheric Temperature Anomalies During Major Ssw Events As Observed With Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Chad Fish, Josh P. Herron

Leda Sox

While the mesospheric temperature anomalies associated with Sudden Stratospheric Warmings (SSWs) have been observed extensively in the polar regions, observations of these anomalies at midlatitudes are sparse. The original Rayleigh-scatter lidar that operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU) collected a very dense set of temperature data for 11 years, from 1993 through 2004. The temperatures derived from these data extended over the mesosphere, from 45 to 90 km. This work focuses on the extensive Rayleigh lidar observations made during seven …


Rayleigh Scatter Lidar Observations Of The Midlatitude Mesosphere's Response To Sudden Stratospheric Warmings, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron May 2014

Rayleigh Scatter Lidar Observations Of The Midlatitude Mesosphere's Response To Sudden Stratospheric Warmings, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron

Leda Sox

The original Rayleigh-scatter lidar that operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU) collected a very dense set of temperature data for 11 years, from 1993 through 2004. The temperatures derived from these data extended over the mesosphere, from 45 to 90 km. This work will focus on the extensive Rayleigh lidar observations made during the seven major SSW events that occurred between 1993 and 2004. In order to determine the characteristics of the midlatitude mesospheric temperatures during SSWs, comparisons were made …


Rayleigh Lidar Observations Of The Mid-Latitude Mesosphere During Stratospheric Warming Events And A New Rayleigh-Mie-Raman Lidar At Usu, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron, Matthew T. Emerick Sep 2013

Rayleigh Lidar Observations Of The Mid-Latitude Mesosphere During Stratospheric Warming Events And A New Rayleigh-Mie-Raman Lidar At Usu, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron, Matthew T. Emerick

Leda Sox

The original Rayleigh-scatter lidar that operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), collected temperature data for 11 years, from 1993 through 2004. The temperatures derived from these data extended over the mesosphere, from 45 to 90 km. Recently, these temperatures were combined with other observations to examine the mid-latitude response to Sudden Stratospheric Warmings (SSWs) in the polar regions. Extensive Rayleigh lidar observations were made during a several SSW events. In order to look for effects of the SSWs, comparisons were …


The Mid-Latitude Mesosphere’S Response To Sudden Stratospheric Warmings As Determined From Rayleigh Lidar Temperatures, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron Aug 2013

The Mid-Latitude Mesosphere’S Response To Sudden Stratospheric Warmings As Determined From Rayleigh Lidar Temperatures, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron

Leda Sox

The original Rayleigh-scatter lidar that operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), collected temperature data for 11 years, from 1993 through 2004. The temperatures derived from these data extended over the mesosphere, from 45 to 90 km. Recently, they were combined with other observations to examine the mid-latitude responses to Sudden Stratospheric Warmings (SSWs) in the polar regions. (The other observational instruments being an ionosonde, a meteor wind radar, a Na lidar, and a satellite.) Extensive Rayleigh lidar observations were made …


First Temperature Observations With The Usu Very Large Rayleigh Lidar: An Examination Of Mesopause Temperatures, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham, Lance W. Petersen, Matthew T. Emerick Dec 2012

First Temperature Observations With The Usu Very Large Rayleigh Lidar: An Examination Of Mesopause Temperatures, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham, Lance W. Petersen, Matthew T. Emerick

Leda Sox

No abstract provided.


Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Jun 2012

Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Leda Sox

The Rayleigh-Scatter lidar system at the Atmospheric Lidar Observatory (ALO) on the Utah State campus is currently going through a series of upgrades to significantly improve its observational abilities. A specific objective of these upgrades is to expand the altitude range over which backscattered photons can be collected. A second objective is to increase the sensitivity of the instrument to be able to analyze the raw data at finer temporal and/or spatial resolutions. By measuring relative densities, the system will be able to produce absolute temperatures and relative density perturbations, which illustrate gravity wave structures. Gravity wave studies will significantly …


Results From An Extremely Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar May 2012

Results From An Extremely Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar

Leda Sox

Rayleigh-Scatter lidar systems effectively use remote sensing techniques to continuously measure atmospheric regions, such as the mesosphere (45-100km) where in situ measurements are rarely possible. The Rayleigh lidar located at the Atmospheric Lidar Observatory (ALO) on the Utah State campus is currently undergoing upgrades to make it the most sensitive of its kind. Here, the important components of these upgrades and how they will effect the study of a particular atmospheric phenomena, atmospheric gravity waves, will be discussed. We will also summarize what has been done to the system during this year to bring us to the threshold of initial …


Observations With The Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Apr 2012

Observations With The Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Leda Sox

The mesosphere is the most unexplored region of the atmosphere. Its altitude range of 50-85 km lies in between the reaches of data collecting instruments like weather balloons and satellites. For this reason, remote sensing systems, such as lidar, which are able to employ ground-based instruments to make extensive measurements in this difficult to detect region. The Rayleigh-scatter lidar at USU is currently being redeveloped to be the most powerful and sensitive of its kind. This type of lidar exploits light and particle interactions, like those that account for the blue color of the sky, to make relative density and …


Characterization Of Pollen Particles Using Lidar, Leda Sox Oct 2010

Characterization Of Pollen Particles Using Lidar, Leda Sox

Leda Sox

We have observed pollen in the local troposphere using the depolarization capabilities of a LIDAR (Light Detection and Ranging) system. The polarization characteristics of the received LIDAR signal, along with supplemental pollen forecast data, allowed me to characterize the shape of the pollen particles.