Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

On Outflows Due To Radiation, Randall Cody Dannen May 2023

On Outflows Due To Radiation, Randall Cody Dannen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Observations of ionized AGN outflows have provided compelling evidence that the radiation field transfers both momentum and energy to the plasma. At parsec scale distances in AGN, energy transfer can dominate, in which case the only force needed to launch an outflow is due to gas pressure. Much closer to the black hole, gravity dominates thermal energy due to insufficient heating by the radiation and the gas is in the so-called ’cold wind solution’ regime. Only magnetic or radiation forces can lead to outflow, but it is unclear how these forces depend on the spectral energy distribution (SED) and the …


Dust-Gas Dynamics Driven By The Streaming Instability With Various Pressure Gradients, Stanley Antedio Baronett May 2022

Dust-Gas Dynamics Driven By The Streaming Instability With Various Pressure Gradients, Stanley Antedio Baronett

UNLV Theses, Dissertations, Professional Papers, and Capstones

The radial pressure gradient (RPG), along the midplane of gaseous protoplanetary disks (PPD) – planetary nurseries – poses a severe obstacle to planet formation. Micron-sized dust grains, embedded in the disc, must quickly grow to kilometer-sized planetesimals – the building blocks of planets – before fatally drifting inwards, by RPG-induced gas drag, into a central host star. However, the RPG simultaneously powers one of the most robust processes to overcome this radial-drift barrier: the streaming instability (SI). Spontaneously triggered, the SI aerodynamically concentrates drifting dust via drag-induced, coupled interactions and feedback with the surrounding gas. In particular, the non-linear phase …


Force Multiplier Calculations For X-Ray Binaries And Active Galactic Nuclei, Randall Cody Dannen Aug 2018

Force Multiplier Calculations For X-Ray Binaries And Active Galactic Nuclei, Randall Cody Dannen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Motivated by the work done to explore the winds from hot stars (Lamers & Cassinelli 1999), we develop a method for self consistently calculating force multipliers for Type 1 and Type 2 active galactic nuclei (AGN), soft and hard start X-ray binaries (XRBs) spectral energy distributions (SEDs). We find that the ampflication to the radiation force can be as large as 100 even when the gas is highly ionized due to Fe and O ions. We discuss future efforts to incorporate these findings in magnetohydrodynamic simulations.


The Formation And Dynamics Of Clouds In The Environment Of Active Galactic Nuclei, Timothy Waters Aug 2017

The Formation And Dynamics Of Clouds In The Environment Of Active Galactic Nuclei, Timothy Waters

UNLV Theses, Dissertations, Professional Papers, and Capstones

Active galactic nuclei (AGN) are among the most luminous objects in the universe and are known to be powered by accretion onto supermassive black holes in the centers of galaxies. AGN clouds are prominent components of successful models that attempt to unify the diversity of AGN. These clouds are often hypothesized to be the source of the broad and narrow line emission features seen in AGN spectra. Moreover, the high column densities of gas needed to account for broad absorption lines has been attributed to the same population of clouds, while the motion of AGN clouds has been invoked to …


Understanding Selenium Distribution In Lake Mead Using A Three-Dimensional Hydrodynamic Based Water Quality Model, Xiaolu Wei May 2014

Understanding Selenium Distribution In Lake Mead Using A Three-Dimensional Hydrodynamic Based Water Quality Model, Xiaolu Wei

UNLV Theses, Dissertations, Professional Papers, and Capstones

Shallow groundwater and surface drainages in Las Vegas Wash are known to have elevated level of selenium which mainly comes from the naturally occurring geological hotspots on the southeast side of the Las Vegas Valley. Selenium fate and transport after it enters into Lake Mead from the Las Vegas Wash are not clearly understood. An open sourced three-dimensional Environmental Fluid Dynamic Code model (EFDC), developed by the United States Environmental Protection Agency, was used to model movement of selenium in the Boulder Basin, Lake Mead. The model was calibrated by observed data from 2006 to 2007. The concept of Lagrangian …


Parker Winds Revisited: An Extension To Disk Winds, Timothy Waters May 2012

Parker Winds Revisited: An Extension To Disk Winds, Timothy Waters

UNLV Theses, Dissertations, Professional Papers, and Capstones

A simple 1D dynamical model of thermally driven disk winds is proposed, based on the results of recent, 2.5D axi-symmetric simulations. Our formulation of the disk wind problem is in the spirit of the original Parker (1958) and Bondi (1952) problems, namely we assume an elementary flow configuration consisting of an outflow following pre-defined trajectories in the presence of a central gravitating point mass. Viscosity and heat conduction are neglected. We consider two different streamline geometries, both comprised of straight lines in the (x,z)-plane: (i) streamlines that converge to a geometric point located at (x,z)=(0,-d) and (ii) streamlines that emerge …