Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Quantum Transpiler Optimization: On The Development, Implementation, And Use Of A Quantum Research Testbed, Brandon K. Kamaka Mar 2020

Quantum Transpiler Optimization: On The Development, Implementation, And Use Of A Quantum Research Testbed, Brandon K. Kamaka

Theses and Dissertations

Quantum computing research is at the cusp of a paradigm shift. As the complexity of quantum systems increases, so does the complexity of research procedures for creating and testing layers of the quantum software stack. However, the tools used to perform these tasks have not experienced the increase in capability required to effectively handle the development burdens involved. This case is made particularly clear in the context of IBM QX Transpiler optimization algorithms and functions. IBM QX systems use the Qiskit library to create, transform, and execute quantum circuits. As coherence times and hardware qubit counts increase and qubit topologies …


Solving Combinatorial Optimization Problems Using The Quantum Approximation Optimization Algorithm, Nicholas J. Guerrero Mar 2020

Solving Combinatorial Optimization Problems Using The Quantum Approximation Optimization Algorithm, Nicholas J. Guerrero

Theses and Dissertations

The Quantum Approximation Optimization Algorithm (QAOA) is one of the most promising applications for noisy intermediate-scale quantum machines due to the low number of qubits required as well as the relatively low gate count. Much work has been done on QAOA regarding algorithm implementation and development; less has been done checking how these algorithms actually perform on a real quantum computer. Using the IBM Q Network, several instances of combinatorial optimization problems (the max cut problem and dominating set problem) were implemented into QAOA and analyzed. It was found that only the smallest toy max cut algorithms performed adequately: those …


Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi Jan 2020

Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi

Theses and Dissertations

Quantum computing is an interdisciplinary field at the intersection of computer science, mathematics, and physics that studies information processing tasks on a quantum computer. A quantum computer is a device whose operations are governed by the laws of quantum mechanics. As building quantum computers is nearing the era of commercialization and quantum supremacy, it is essential to think of potential applications that we might benefit from. Among many applications of quantum computation, one of the emerging fields is quantum machine learning. We focus on predictive models for binary classification and variants of Support Vector Machines that we expect to be …