Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss Jan 2021

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss

Theses and Dissertations

Warm dense plasma is the matter that exists, roughly, in the range of 10,000 to 10,000,000 Kelvin and has solid-like densities, typically between 0.1 and 10 grams per centimeter. Warm dense fluids like hydrogen, helium, and carbon are believed to make up the interiors of many planets, white dwarfs, and other stars in our universe. The existence of warm dense matter (WDM) on Earth, however, is very rare, as it can only be created with high-energy sources like a nuclear explosion. In such an event, theoretical and computational models that accurately predict the response of certain materials are thus very …


Reliable And Interpretable Machine Learning For Modeling Physical And Cyber Systems, Daniel L. Marino Lizarazo Jan 2021

Reliable And Interpretable Machine Learning For Modeling Physical And Cyber Systems, Daniel L. Marino Lizarazo

Theses and Dissertations

Over the past decade, Machine Learning (ML) research has predominantly focused on building extremely complex models in order to improve predictive performance. The idea was that performance can be improved by adding complexity to the models. This approach proved to be successful in creating models that can approximate highly complex relationships while taking advantage of large datasets. However, this approach led to extremely complex black-box models that lack reliability and are difficult to interpret. By lack of reliability, we specifically refer to the lack of consistent (unpredictable) behavior in situations outside the training data. Lack of interpretability refers to the …


Information Architecture For A Chemical Modeling Knowledge Graph, Adam R. Luxon Jan 2021

Information Architecture For A Chemical Modeling Knowledge Graph, Adam R. Luxon

Theses and Dissertations

Machine learning models for chemical property predictions are high dimension design challenges spanning multiple disciplines. Free and open-source software libraries have streamlined the model implementation process, but the design complexity remains. In order better navigate and understand the machine learning design space, model information needs to be organized and contextualized. In this work, instances of chemical property models and their associated parameters were stored in a Neo4j property graph database. Machine learning model instances were created with permutations of dataset, learning algorithm, molecular featurization, data scaling, data splitting, hyperparameters, and hyperparameter optimization techniques. The resulting graph contains over 83,000 nodes …


Improving Space Efficiency Of Deep Neural Networks, Aliakbar Panahi Jan 2021

Improving Space Efficiency Of Deep Neural Networks, Aliakbar Panahi

Theses and Dissertations

Language models employ a very large number of trainable parameters. Despite being highly overparameterized, these networks often achieve good out-of-sample test performance on the original task and easily fine-tune to related tasks. Recent observations involving, for example, intrinsic dimension of the objective landscape and the lottery ticket hypothesis, indicate that often training actively involves only a small fraction of the parameter space. Thus, a question remains how large a parameter space needs to be in the first place — the evidence from recent work on model compression, parameter sharing, factorized representations, and knowledge distillation increasingly shows that models can be …


K-Nearest Neighbors Density-Based Clustering, Avory C. Bryant Jan 2021

K-Nearest Neighbors Density-Based Clustering, Avory C. Bryant

Theses and Dissertations

Traditional density-based clustering approaches rely on a distance-based parameter to define data connectivity and density. However, an appropriate value of this parameter can be difficult to determine as it is highly dependent on the underlying distribution of the data. In particular, distribution parameters affect the scale of inter-group distances (e.g., variance); this dependence leads to a well-known inability to simultaneously detect clusters at varying levels of density. In this work, connectivity and density are defined according to the rank-order induced by the distance metric (i.e., invariant to the expected scale of the distances). Connectivity by k-nearest neighbors and density by …


A Deep Learning U-Net For Detecting And Segmenting Liver Tumors, Vidhya Cardozo Jan 2021

A Deep Learning U-Net For Detecting And Segmenting Liver Tumors, Vidhya Cardozo

Theses and Dissertations

Visualization of liver tumors on simulation CT scans is challenging even with contrast-enhancement, due to the sensitivity of the contrast enhancement to the timing of the CT acquisition. Image registration to magnetic resonance imaging (MRI) can be helpful for delineation, but differences in patient position, liver shape and volume, and the lack of anatomical landmarks between the two image sets makes the task difficult. This study develops a U-Net based neural network for automated liver and tumor segmentation for purposes of radiotherapy treatment planning. Non-contrast simulation based abdominal CT axial scans of 52 patients with primary liver tumors were utilized. …


Learning From Multi-Class Imbalanced Big Data With Apache Spark, William C. Sleeman Iv Jan 2021

Learning From Multi-Class Imbalanced Big Data With Apache Spark, William C. Sleeman Iv

Theses and Dissertations

With data becoming a new form of currency, its analysis has become a top priority in both academia and industry, furthering advancements in high-performance computing and machine learning. However, these large, real-world datasets come with additional complications such as noise and class overlap. Problems are magnified when with multi-class data is presented, especially since many of the popular algorithms were originally designed for binary data. Another challenge arises when the number of examples are not evenly distributed across all classes in a dataset. This often causes classifiers to favor the majority class over the minority classes, leading to undesirable results …


Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian Jan 2021

Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian

Theses and Dissertations

Optimization of extrusion-based bioprinting (EBB) parameters have been systematically conducted through experimentation. However, the process is time and resource-intensive and not easily translatable across different laboratories. A machine learning (ML) approach to EBB parameter optimization can accelerate this process for laboratories across the field through training using data collected from published literature. In this work, regression-based and classification-based ML models were investigated for their abilities to predict printing outcomes of cell viability and filament diameter for cell-containing alginate and gelatin composite hydrogels. Regression-based models were investigated for their ability to predict suitable extrusion pressure given desired cell viability when keeping …