Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 193

Full-Text Articles in Physical Sciences and Mathematics

Molecular Insights Into The Redox Of Atmospheric Mercury Through Laser Spectroscopy, Rongrong Wu Cohen Dec 2022

Molecular Insights Into The Redox Of Atmospheric Mercury Through Laser Spectroscopy, Rongrong Wu Cohen

Theses and Dissertations

The widespread pollution of mercury motivates research into its atmospheric chemistry and transport. Gaseous elemental mercury (Hg(0)) dominates mercury emission to the atmosphere, but the rate of its oxidation to mercury compound (Hg(II)) plays a significant role in controlling where and when mercury deposits to ecosystems. Atomic bromine is regarded as the main oxidant for Hg(0) oxidation, known to initiate the oxidation via a two-step process in the atmosphere – formation of BrHg (R1) and subsequent reactions of BrHg with abundant free radicals Y, i.e., NO2, HOO, etc. (R2), where the reaction of BrHg +Y could also lead to the …


Optimizing Optical Switching Of Non-Linear Optimizing Optical Switching Of Non-Linear Hyperbolic Metamaterials, James A. Ethridge Sep 2022

Optimizing Optical Switching Of Non-Linear Optimizing Optical Switching Of Non-Linear Hyperbolic Metamaterials, James A. Ethridge

Theses and Dissertations

Modern optical materials are engineered to be used as optical devices in specific applications, such as optical computing. For optical computing, efficient forms of a particular device, the optical switch, still have not been successfully demonstrated. This problem is addressed in this research through the use of designed optical metamaterials, specifically, hyperbolic metamaterials, which offer the possibility of large non-linear properties with a low switching intensity. One-dimensional layered hyperbolic metamaterials composed of alternating layers of metal and dielectric were used here, with ITO as the metal and SiO2 as the dielectric. The non-linear behavior of the ITO/SiO2 layered …


Methods For Focal Plane Array Resolution Estimation Using Random Laser Speckle In Non-Paraxial Geometries, Phillip J. Plummer Jun 2022

Methods For Focal Plane Array Resolution Estimation Using Random Laser Speckle In Non-Paraxial Geometries, Phillip J. Plummer

Theses and Dissertations

The infrared (IR) imaging community has a need for direct IR detector evaluation due to the continued demand for small pixel pitch detectors, the emergence of strained-layer-super-lattice devices, and the associated lateral carrier diffusion issues. Conventional laser speckle-based modulation transfer function (MTF) estimation is dependent on Fresnel propagation and a wide-sense-stationary input random process, limiting the use of this approach for lambda (wavelength)-scale IR devices. This dissertation develops two alternative methodologies for speckle-based resolution evaluation of IR focal plane arrays (FPAs). Both techniques are formulated using Rayleigh-Sommerfield electric field propagation, making them valid in the non-paraxial geometries dictated for resolution …


Formulation And Characterization Of Fast-Curing Plastic Scintillators With High-Z Loading, Theodore W. Stephens Mar 2022

Formulation And Characterization Of Fast-Curing Plastic Scintillators With High-Z Loading, Theodore W. Stephens

Theses and Dissertations

Development of novel fast-curing plastic scintillators is highly advantageous due to their potential to be manufactured via 3D printing. Several formulations were developed that exhibit enhanced photon sensitivity, producing modest but discernible photopeaks at an incident gamma energy of 122 keV. The photon sensitivity is achieved via bismuth high-Z loading; however, this practice typically results in diminished light yields. Subsequent formulations, which varied the photoinitiator concentration and curing time, demonstrated successful curing with sufficient plastic hardness, reduced purple discoloration, reduced heat buildup during curing, and resulted in less cracking during the curing process, all of which were correlated with lower …


Directionally Sensitive Gamma Imaging Using Rotating Scatter Masks And Inexpensive, Scintillation Detectors, Christopher S. Charles Mar 2022

Directionally Sensitive Gamma Imaging Using Rotating Scatter Masks And Inexpensive, Scintillation Detectors, Christopher S. Charles

Theses and Dissertations

This work demonstrates the first instantiation of the FitzGerald Rotating Scatter Mask (RSM) as a proof-of-concept for two-dimensional source direction determination using a single, inexpensive, non-cooled scintillator, as well as an alternate mask design for comparison. A large RSM was additively manufactured from low-Z, acrylic like material, and rotated around the ubiquitous standard 3" x 3" NaI(Tl) or NaI(Tl)/CsI(Tl) phoswich detector, set internally to the mask. Smaller versions of the FitzGerald and alternate RSM designs were 3D printed for testing and used in conjunction with a LaBr detector to characterize the RSM system with a size and weight reduction applied. …


Characterization Of Infrared Metasurface Optics With An Optical Scatterometer, Matthew R. Miller Dec 2021

Characterization Of Infrared Metasurface Optics With An Optical Scatterometer, Matthew R. Miller

Theses and Dissertations

An optical scatterometer is used to characterize the infrared scatter of a dielectric metasurface cylindrical lens and two variants of that design. The design uses dielectric nanopillars to create the parabolic phase delay required for lensing; the variants change the length of the nanopillars from the design length of 4 microns to 0.9 and 5.2 microns. Scatter measurements were made at the design wavelength of 4 microns, and at 3.39 and 5 microns. These measurements showed wide-angle scatter greater than that measured for a conventional refractive optic, and that these metasurfaces perform their optical function best at the design wavelength …


Analysis Of Space To Ground Ladar Performance With Non-Traditional Optics, Prayant P.S. Hanjra Sep 2021

Analysis Of Space To Ground Ladar Performance With Non-Traditional Optics, Prayant P.S. Hanjra

Theses and Dissertations

Two major obstacles to space-based LADAR systems are low power returns from targets and limitations on size and weight for transporting large optics into orbit. Signals incur significant losses during roundtrip propagation through the atmosphere and from diffuse scattering off of targets. Models, such as the Laser Environmental Effects Definition and Reference (LEEDR) simulator and High Energy Laser End to End Operational Simulation (HELEEOS) can predict these losses due to the atmosphere and optical components for a variety of atmospheric and environmental conditions across the globe. A transmissometer is used to validate these models. These losses are used to determine …


Improved Out-Of-Plane Brdf Measurement And Modeling, Todd V. Small Sep 2021

Improved Out-Of-Plane Brdf Measurement And Modeling, Todd V. Small

Theses and Dissertations

The bi-directional reflectance distribution function (BRDF) describes the directional (spatial) nature of light’s reflectance from a material surface. When incident light of a particular wavelength strikes a material surface from a particular direction, portions of that incident light will be reflected into various directions in various amounts, depending on the material’s surface characteristics. Historically, the vast majority of BRDF measurement and modeling research has focused on reflection within the plane-of incidence (in-plane) and dealt primarily with simplified isotropic BRDFs. Remote sensing applications, such as satellite light curve analysis, typically rely on closed-form microfacet models for efficiency. There are many factors, …


On-Chip Nanoscale Plasmonic Optical Modulators, Abdalrahman Mohamed Nader Abdelhamid Jun 2021

On-Chip Nanoscale Plasmonic Optical Modulators, Abdalrahman Mohamed Nader Abdelhamid

Theses and Dissertations

In this thesis work, techniques for downsizing Optical modulators to nanoscale for the purpose of utilization in on chip communication and sensing applications are explored. Nanoscale optical interconnects can solve the electronics speed limiting transmission lines, in addition to decrease the electronic chips heat dissipation. A major obstacle in the path of achieving this goal is to build optical modulators, which transforms data from the electrical form to the optical form, in a size comparable to the size of the electronics components, while also having low insertion loss, high extinction ratio and bandwidth. Also, lap-on-chip applications used for fast diagnostics, …


Optical Study Of 2-D Detonation Wave Stability, Eulaine T. Grodner Mar 2021

Optical Study Of 2-D Detonation Wave Stability, Eulaine T. Grodner

Theses and Dissertations

Fundamental optical detonation study of detonations constricted to a 2-d plane propagation, and detonations propagating around a curve. All images were processed using modern image processing techniques. The optical techniques used were shadowgraph, Schlieren, and chemiluminescence. In the 2-Dstraight channels, it was determined wave stability was a factor of cell size. It was also determined the detonation wave thickness (area between the combustion and shockwave) was a factor of how much heat available for the detonation. For the detonations propagating around a curve, it was determined the three main classifications of wave stability were stable, unstable, and detonation wave restart. …


Dynamic Holography In Resonant Nonlinear Media: Theory And Application, Jonathan E. Slagle Mar 2021

Dynamic Holography In Resonant Nonlinear Media: Theory And Application, Jonathan E. Slagle

Theses and Dissertations

Two beam coupling (TBC) is a coherent interaction in which energy is transferred from one laser beam to another and has promising applications in real-time holography and coherent beam combing. We have recently shown efficient degenerate frequency TBC for counter-propagation geometries in isotropic two-photon absorbing media pumped with a nanosecond pulsed laser. When an interference pattern is generated in this media, single and two photon absorption initiates a population redistribution resulting in a holographic grating with the same modulation period and phase initially. However, due to temporal convolution of self- and cross-phase modulation, the grating will begin to shift in …


A Comparative Evaluation Of The Fast Optical Pulse Response Of Event-Based Cameras, Tyler J. Brewer Mar 2021

A Comparative Evaluation Of The Fast Optical Pulse Response Of Event-Based Cameras, Tyler J. Brewer

Theses and Dissertations

Event cameras use biologically inspired readout circuit architecture to offer a faster and more efficient method of imaging than traditional frame-based detectors. The asynchronous event reporting circuit timestamps events to 1 microsecond resolution, but latency increases when many pixels are stimulated simultaneously. To characterize this variability, the DAVIS240, DAVIS346, DVXPlorer, and Prophesee Gen3M VGA-CD 1.1 cameras were exposed to single step-function flashes with amplitudes from 9.3-771cd/m2, stimulating from 0.0042-100 of pixels. The Median Absolute Deviation of pixel response times ranged between 0 and 6086µs, increasing with the percent of pixels stimulated (PSP). The number of events generated per …


Examination Of A Lenseless Setup For Reflective Inverse Diffusion Of Light, John Nguyen Mar 2021

Examination Of A Lenseless Setup For Reflective Inverse Diffusion Of Light, John Nguyen

Theses and Dissertations

Reflective inverse diffusion uses spatial light modulators to shape an incident wavefront so that when the wavefront interacts with some diffuse scattering sample, the reflected light will constructively interfere at a single focus. This thesisexamines the efficacy of using a lensless setup against a focal plane setup in achieving reflective inverse diffusion while simultaneously beamsteering. The lensless setup outperformed its counterpart by being able to focus more energy in a region, but failed to achieve the same beamsteering capabilities as the focal plane system. Understanding the flaws behind the lensless setup will be instrumental in creating a setup that can …


Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead Jan 2021

Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead

Theses and Dissertations

Metal-silicon nanostructures are a growing area of research due to their applications in multiple fields such as biosensing and catalysis. In addition, silicon can provide strong support effects to metal nanoparticles while being more cost effective than traditionally used supports, like titania. Traditional wet-chemical methods are capable of synthesizing metal-silicon nanostructures with a variety of composition and nanoparticle shapes, but they often require high temperatures, toxic solvents, strong reducing agents, or need capping agents added to stabilize the nanoparticles. Laser processing is an emerging technique capable of synthesizing metal-silicon composite surfaces that offers a faster, simpler, and greener synthesis route …


Live Cell Biomass Tracking For Basic, Translational, And Clinical Research, Graeme Murray Jan 2021

Live Cell Biomass Tracking For Basic, Translational, And Clinical Research, Graeme Murray

Theses and Dissertations

Single cell mass is tightly regulated throughout generations and the cell cycle, making it an important marker of cell health. Abnormal changes in cell size can be the first indication of dysfunction in response to environmental stimuli such as cytotoxic drugs. Described here is the further development of high-speed live cell interferometry (HSLCI) to concurrently measure the changes in single cell mass of thousands of cells over time. Critically, the high-throughput nature of HSLCI provides realistic pictures of tumor heterogeneity. This throughput enabled HSLCI to correctly predict in vivo carboplatin sensitivity of three triple negative breast cancer patient derived xenografts, …


Characterization Of Fiber Bragg Grating Based, Geometry-Dependent, Magnetostrictive Composite Sensors, Edward Lynch Dec 2020

Characterization Of Fiber Bragg Grating Based, Geometry-Dependent, Magnetostrictive Composite Sensors, Edward Lynch

Theses and Dissertations

Optical sensors based on geometry dependent magnetostrictive composite, having potential applications in current sensing and magnetic field sensing are modeled and evaluated experimentally with an emphasis on their thermal immunity from thermal disturbances. Two sensor geometries composed of a fiber Bragg grating (FBG) embedded in a shaped Terfenol-D/epoxy composite material, which were previously prototyped and tested for magnetic field response, were investigated. When sensing magnetic fields or currents, the primary function of the magnetostrictive composite geometry is to modulate the magnetic flux such that a magnetostrictive strain gradient is induced on the embedded FBG. Simulations and thermal experiments reveal the …


Snow-Albedo Feedback In Northern Alaska: How Vegetation Influences Snowmelt, Lucas C. Reckhaus Aug 2020

Snow-Albedo Feedback In Northern Alaska: How Vegetation Influences Snowmelt, Lucas C. Reckhaus

Theses and Dissertations

This paper investigates how the snow-albedo feedback mechanism of the arctic is changing in response to rising climate temperatures. Specifically, the interplay of vegetation and snowmelt, and how these two variables can be correlated. This has the potential to refine climate modelling of the spring transition season. Research was conducted at the ecoregion scale in northern Alaska from 2000 to 2020. Each ecoregion is defined by distinct topographic and ecological conditions, allowing for meaningful contrast between the patterns of spring albedo transition across surface conditions and vegetation types. The five most northerly ecoregions of Alaska are chosen as they encompass …


One-Dimensional Multi-Frame Blind Deconvolution Using Astronomical Data For Spatially Separable Objects, Marc R. Brown Mar 2020

One-Dimensional Multi-Frame Blind Deconvolution Using Astronomical Data For Spatially Separable Objects, Marc R. Brown

Theses and Dissertations

Blind deconvolution is used to complete missions to detect adversary assets in space and to defend the nation's assets. A new algorithm was developed to perform blind deconvolution for objects that are spatially separable using multiple frames of data. This new one-dimensional approach uses the expectation-maximization algorithm to blindly deconvolve spatially separable objects. This object separation reduces the size of the object matrix from an NxN matrix to two singular vectors of length N. With limited knowledge of the object and point spread function the one-dimensional algorithm successfully deconvolved the objects in both simulated and laboratory data.


Validation Of Hts Optical Turbulence Profiling Via Sonic Anemometry, Alexander S. Boeckenstedt Mar 2020

Validation Of Hts Optical Turbulence Profiling Via Sonic Anemometry, Alexander S. Boeckenstedt

Theses and Dissertations

Previous turbulence measurements along a near-ground, 500 m, horizontal path using two helium-neon laser beacons and Hartmann Turbulence Sensor (HTS) yielded profiles of C2n by measuring local aberrated wavefront tilts. The HTS C2n estimates were consistent with integrated turbulence values collected along the same path by a BLS900 scintillometer. Further validation of the HTS profiling method is necessary to produce accurate optical turbulence profiles for wavefront correction and to eventually gain an improved understanding of turbulence in the lower atmosphere and its variation as a function of altitude. In order to add confidence to the HTS …


Mult-Spectral Imaging Of Vegetation With A Diffractive Plenoptic Camera, Tristan R. Naranjo Mar 2020

Mult-Spectral Imaging Of Vegetation With A Diffractive Plenoptic Camera, Tristan R. Naranjo

Theses and Dissertations

Snapshot multi-spectral sensors allow for object detection based on its spectrum for remote sensing applications in air or space. By making these types of sensors more compact and lightweight, it allows drones to dwell longer on targets or the reduction of transport costs for satellites. To address this need, I designed and built a diffractive plenoptic camera (DPC) which utilized a Fresnel zone plate and a light field camera in order to detect vegetation via a normalized difference vegetation index (NDVI). This thesis derives design equations by relating DPC system parameters to its expected performance and evaluates its multi-spectral performance. …


Zernike Piston Statistics In Turbulent Multi-Aperture Optical Systems, Joshua J. Garretson Mar 2020

Zernike Piston Statistics In Turbulent Multi-Aperture Optical Systems, Joshua J. Garretson

Theses and Dissertations

There is currently a lack of research into how the atmosphere effects Zernike piston. This Zernike piston is a coefficient related to the average phase delay of a wave. Usually Zernike piston can be ignored over a single aperture because it is merely a delay added to the entire wavefront. For multi-aperture interferometers though piston cannot be ignored. The statistics of Zernike piston could supplement and improve atmospheric monitoring, adaptive optics, stellar interferometers, and fringe tracking. This research will focus on developing a statistical model for Zernike piston introduced by atmospheric turbulence.


Global Gradient-Based Phase Unwrapping Algorithm For Increased Performance In Wavefront Sensing, Bryan R. Bartelt Mar 2020

Global Gradient-Based Phase Unwrapping Algorithm For Increased Performance In Wavefront Sensing, Bryan R. Bartelt

Theses and Dissertations

As the reliance on satellite data for military and commercial use increases, more effort must be exerted to protect our space-based assets. In order to help increase our space domain awareness (SDA), new approaches to ground-based space surveillance via wavefront sensing must be adopted. Improving phase-unwrapping algorithms in order to assist in phase retrieval methods is one way of increasing the performance in current adaptive optics (AO) systems. This thesis proposes a new phase-unwrapping algorithm that uses a global, gradient-based technique to more rapidly identify and correct for areas of phase wrapping during particular phase retrieval methods. This is beneficial …


Nonlinear Characterizing Of A New Titanium Nitride On Aluminum Oxide Metalens, Michael A. Cumming Oct 2019

Nonlinear Characterizing Of A New Titanium Nitride On Aluminum Oxide Metalens, Michael A. Cumming

Theses and Dissertations

A sample metalens generated from Titanium Nitride deposited onto Aluminum Oxide was designed to focus at 10 microns with a beam centered at 800nm, and when analyzed with high intensity illumination was found to have a focal length of 9.650 ±.003µm at an intensity of 16.93[MW/cm2 ]. Analyzing this change by comparing it to a Fresnel Lens’ physics shows that for this lens, the effective nonlinear index of refraction is certainly greater than the nonlinear index of just Titanium Nitride itself, at −1.6239 × 10−15[m2/W] compared to the materials −1.3 × 10−15[m2 …


Digital Holography Efficiency Experiments For Tactical Applications, Douglas E. Thornton Sep 2019

Digital Holography Efficiency Experiments For Tactical Applications, Douglas E. Thornton

Theses and Dissertations

Digital holography (DH) uses coherent detection and offers direct access to the complex-optical field to sense and correct image aberrations in low signal-to-noise environments, which is critical for tactical applications. The performance of DH is compared to a similar, well studied deep-turbulence wavefront sensor, the self-referencing interferometer (SRI), with known efficiency losses. Wave optics simulations with deep-turbulence conditions and noise were conducted and the results show that DH outperforms the SRI by 10's of dB due to DH's strong reference. Additionally, efficiency experiments were conducted to investigate DH system losses. The experimental results show that the mixing efficiency (37%) is …


The Non-Mechanical Beam Steering Of Light In Reflective Inverse Diffusion, Eric K. Nagamine Mar 2019

The Non-Mechanical Beam Steering Of Light In Reflective Inverse Diffusion, Eric K. Nagamine

Theses and Dissertations

Wavefront shaping is a technique that uses spatial light modulators to conjugate the phase of light incident on a rough surface, such that the light will refocus after reflection. This refocusing effect is called reflective inverse diffusion. There currently are two different approaches used to achieve reflective inverse diffusion: iterative methods and matrix methods. Iterative methods find one phase mask which allows for reflected light to be focused at a single, specific position, with results that are immediately available and continuously improving. Matrix methods calculate the complex matrix which describes the rough surface and allows for reflected light to be …


Designing Liquid Crystal For Optoacoustic Detection, Michael T. Dela Cruz Mar 2019

Designing Liquid Crystal For Optoacoustic Detection, Michael T. Dela Cruz

Theses and Dissertations

This research impacts the development of a cost-saving, on-chip device that can replace a wide range of costly, bulky sensors for commercial and defense applications. In particular, the goals of this work were to design and test a sensor that uses the optical properties of liquid crystal (LC) to detect acoustic waves. This began with developing a method to fine-tune the optical features of the liquid crystal. Statistical analysis of select experimental variables, or factors, lead to ideal settings of those variables when creating the sensor. A two-factor and three-factor experiment were separately conducted and analyzed as a preliminary demonstration …


Scaling Film Cooling Adiabatic Effectiveness With Mass Transfer And Thermal Experimental Techniques, Luke J. Mcnamara Mar 2019

Scaling Film Cooling Adiabatic Effectiveness With Mass Transfer And Thermal Experimental Techniques, Luke J. Mcnamara

Theses and Dissertations

With increasing engine temperatures, it is becoming more important to design effective film cooling schemes. Low temperature, large scale tests are often implemented in the design process to reduce cost and complexity. A nondimensional adiabatic effectiveness can be used as an indication of the performance of a film cooling scheme. However, the coolant flow rate must be properly scaled between the low temperature tests and engine temperatures to accurately predict film cooling effectiveness. This process is complicated by gas property variation with temperature. Tests are commonly conducted using thermal measurement techniques with infrared thermography (IR), but the use of pressure …


Infrared And Electro-Optical Stereo Vision For Automated Aerial Refueling, William E. Dallmann Mar 2019

Infrared And Electro-Optical Stereo Vision For Automated Aerial Refueling, William E. Dallmann

Theses and Dissertations

Currently, Unmanned Aerial Vehicles are unsafe to refuel in-flight due to the communication latency between the UAVs ground operator and the UAV. Providing UAVs with an in-flight refueling capability would improve their functionality by extending their flight duration and increasing their flight payload. Our solution to this problem is Automated Aerial Refueling (AAR) using stereo vision from stereo electro-optical and infrared cameras on a refueling tanker. To simulate a refueling scenario, we use ground vehicles to simulate a pseudo tanker and pseudo receiver UAV. Imagery of the receiver is collected by the cameras on the tanker and processed by a …


Design And Optimization Of A 3-D Plasmonic Huygens Metasurface For Highly-Efficient Flat Optics, Bryan M. Adomanis Sep 2018

Design And Optimization Of A 3-D Plasmonic Huygens Metasurface For Highly-Efficient Flat Optics, Bryan M. Adomanis

Theses and Dissertations

For miniaturization of future USAF unmanned aerial and space systems to become feasible, accompanying sensor components of these systems must also be reduced in size, weight and power (SWaP). Metasurfaces can act as planar equivalents to bulk optics, and thus possess a high potential to meet these low-SWaP requirements. However, functional efficiencies of plasmonic metasurface architectures have been too low for practical application in the infrared (IR) regime. Huygens-like forward-scattering inclusions may provide a solution to this deficiency, but there is no academic consensus on an optimal plasmonic architecture for obtaining efficient phase control at high frequencies. This dissertation asks …


Reconstruction Of The 3d Temperature And Species Concentration Spatial Distribution Of A Jet Engine Exhaust Plume Using An Infrared Fourier Transform Spectrometer Hyperspectral Imager, Mason D. Paulec Sep 2018

Reconstruction Of The 3d Temperature And Species Concentration Spatial Distribution Of A Jet Engine Exhaust Plume Using An Infrared Fourier Transform Spectrometer Hyperspectral Imager, Mason D. Paulec

Theses and Dissertations

The measurement of combustion byproducts is useful for determining pollution of any fuel burning application, efficiency of combustion, and determining detectability of aircraft exhausts. Both intrusive and non-intrusive techniques have been utilized to measure these quantities. For the majority of the non-intrusive techniques, the absorption and emission spectra of the gases are utilized for measurements. For this research, the use of the Telops Infrared Fourier Transform Spectrometer (IFTS) Hyperspectral Imager (HSI) was explored within the scope of combustion diagnostic methods, as an option for remote measurements of a jet turbine to determine concentration of species and temperature of the combustion …