Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

Neural Airport Ground Handling, Yaoxin Wu, Jianan Zhou, Yunwen Xia, Xianli Zhang, Zhiguang Cao, Jie Zhang Dec 2023

Neural Airport Ground Handling, Yaoxin Wu, Jianan Zhou, Yunwen Xia, Xianli Zhang, Zhiguang Cao, Jie Zhang

Research Collection School Of Computing and Information Systems

Airport ground handling (AGH) offers necessary operations to flights during their turnarounds and is of great importance to the efficiency of airport management and the economics of aviation. Such a problem involves the interplay among the operations that leads to NP-hard problems with complex constraints. Hence, existing methods for AGH are usually designed with massive domain knowledge but still fail to yield high-quality solutions efficiently. In this paper, we aim to enhance the solution quality and computation efficiency for solving AGH. Particularly, we first model AGH as a multiple-fleet vehicle routing problem (VRP) with miscellaneous constraints including precedence, time windows, …


Decentralized Multimedia Data Sharing In Iov: A Learning-Based Equilibrium Of Supply And Demand, Jiani Fan, Minrui Xu, Jiale Guo, Lwin Khin Shar, Jiawen Kang, Dusit Niyato, Kwok-Yan Lam Oct 2023

Decentralized Multimedia Data Sharing In Iov: A Learning-Based Equilibrium Of Supply And Demand, Jiani Fan, Minrui Xu, Jiale Guo, Lwin Khin Shar, Jiawen Kang, Dusit Niyato, Kwok-Yan Lam

Research Collection School Of Computing and Information Systems

The Internet of Vehicles (IoV) has great potential to transform transportation systems by enhancing road safety, reducing traffic congestion, and improving user experience through onboard infotainment applications. Decentralized data sharing can improve security, privacy, reliability, and facilitate infotainment data sharing in IoVs. However, decentralized data sharing may not achieve the expected efficiency if there are IoV users who only want to consume the shared data but are not willing to contribute their own data to the community, resulting in incomplete information observed by other vehicles and infrastructure, which can introduce additional transmission latency. Therefore, in this paper, by modeling the …


Transferable Curricula Through Difficulty Conditioned Generators, Sidney Tio, Pradeep Varakantham Aug 2023

Transferable Curricula Through Difficulty Conditioned Generators, Sidney Tio, Pradeep Varakantham

Research Collection School Of Computing and Information Systems

Advancements in reinforcement learning (RL) have demonstrated superhuman performance in complex tasks such as Starcraft, Go, Chess etc. However, knowledge transfer from Artificial "Experts" to humans remain a significant challenge. A promising avenue for such transfer would be the use of curricula. Recent methods in curricula generation focuses on training RL agents efficiently, yet such methods rely on surrogate measures to track student progress, and are not suited for training robots in the real world (or more ambitiously humans). In this paper, we introduce a method named Parameterized Environment Response Model (PERM) that shows promising results in training RL agents …


Imitation Improvement Learning For Large-Scale Capacitated Vehicle Routing Problems, The Viet Bui, Tien Mai Jul 2023

Imitation Improvement Learning For Large-Scale Capacitated Vehicle Routing Problems, The Viet Bui, Tien Mai

Research Collection School Of Computing and Information Systems

Recent works using deep reinforcement learning (RL) to solve routing problems such as the capacitated vehicle routing problem (CVRP) have focused on improvement learning-based methods, which involve improving a given solution until it becomes near-optimal. Although adequate solutions can be achieved for small problem instances, their efficiency degrades for large-scale ones. In this work, we propose a newimprovement learning-based framework based on imitation learning where classical heuristics serve as experts to encourage the policy model to mimic and produce similar or better solutions. Moreover, to improve scalability, we propose Clockwise Clustering, a novel augmented framework for decomposing large-scale CVRP into …


Multi-View Hypergraph Contrastive Policy Learning For Conversational Recommendation, Sen Zhao, Wei Wei, Xian-Ling Mao, Shuai: Yang Zhu, Zujie Wen, Dangyang Chen, Feida Zhu, Feida Zhu Jul 2023

Multi-View Hypergraph Contrastive Policy Learning For Conversational Recommendation, Sen Zhao, Wei Wei, Xian-Ling Mao, Shuai: Yang Zhu, Zujie Wen, Dangyang Chen, Feida Zhu, Feida Zhu

Research Collection School Of Computing and Information Systems

Conversational recommendation systems (CRS) aim to interactively acquire user preferences and accordingly recommend items to users. Accurately learning the dynamic user preferences is of crucial importance for CRS. Previous works learn the user preferences with pairwise relations from the interactive conversation and item knowledge, while largely ignoring the fact that factors for a relationship in CRS are multiplex. Specifically, the user likes/dislikes the items that satisfy some attributes (Like/Dislike view). Moreover social influence is another important factor that affects user preference towards the item (Social view), while is largely ignored by previous works in CRS. The user preferences from these …


Dynamic Police Patrol Scheduling With Multi-Agent Reinforcement Learning, Songhan Wong, Waldy Joe, Hoong Chuin Lau Jun 2023

Dynamic Police Patrol Scheduling With Multi-Agent Reinforcement Learning, Songhan Wong, Waldy Joe, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Effective police patrol scheduling is essential in projecting police presence and ensuring readiness in responding to unexpected events in urban environments. However, scheduling patrols can be a challenging task as it requires balancing between two conflicting objectives namely projecting presence (proactive patrol) and incident response (reactive patrol). This task is made even more challenging with the fact that patrol schedules do not remain static as occurrences of dynamic incidents can disrupt the existing schedules. In this paper, we propose a solution to this problem using Multi-Agent Reinforcement Learning (MARL) to address the Dynamic Bi-objective Police Patrol Dispatching and Rescheduling Problem …


Reinforced Adaptation Network For Partial Domain Adaptation, Keyu Wu, Min Wu, Zhenghua Chen, Ruibing Jin, Wei Cui, Zhiguang Cao, Xiaoli Li May 2023

Reinforced Adaptation Network For Partial Domain Adaptation, Keyu Wu, Min Wu, Zhenghua Chen, Ruibing Jin, Wei Cui, Zhiguang Cao, Xiaoli Li

Research Collection School Of Computing and Information Systems

Domain adaptation enables generalized learning in new environments by transferring knowledge from label-rich source domains to label-scarce target domains. As a more realistic extension, partial domain adaptation (PDA) relaxes the assumption of fully shared label space, and instead deals with the scenario where the target label space is a subset of the source label space. In this paper, we propose a Reinforced Adaptation Network (RAN) to address the challenging PDA problem. Specifically, a deep reinforcement learning model is proposed to learn source data selection policies. Meanwhile, a domain adaptation model is presented to simultaneously determine rewards and learn domain-invariant feature …


Constrained Reinforcement Learning In Hard Exploration Problems, Pankayaraj Pathmanathan, Pradeep Varakantham Feb 2023

Constrained Reinforcement Learning In Hard Exploration Problems, Pankayaraj Pathmanathan, Pradeep Varakantham

Research Collection School Of Computing and Information Systems

One approach to guaranteeing safety in Reinforcement Learning is through cost constraints that are imposed on trajectories. Recent works in constrained RL have developed methods that ensure constraints can be enforced even at learning time while maximizing the overall value of the policy. Unfortunately, as demonstrated in our experimental results, such approaches do not perform well on complex multi-level tasks, with longer episode lengths or sparse rewards. To that end, wepropose a scalable hierarchical approach for constrained RL problems that employs backward cost value functions in the context of task hierarchy and a novel intrinsic reward function in lower levels …


Reinforcement Learning Enhanced Pichunter For Interactive Search, Zhixin Ma, Jiaxin Wu, Weixiong Loo, Chong-Wah Ngo Jan 2023

Reinforcement Learning Enhanced Pichunter For Interactive Search, Zhixin Ma, Jiaxin Wu, Weixiong Loo, Chong-Wah Ngo

Research Collection School Of Computing and Information Systems

With the tremendous increase in video data size, search performance could be impacted significantly. Specifically, in an interactive system, a real-time system allows a user to browse, search and refine a query. Without a speedy system quickly, the main ingredient to engage a user to stay focused, an interactive system becomes less effective even with a sophisticated deep learning system. This paper addresses this challenge by leveraging approximate search, Bayesian inference, and reinforcement learning. For approximate search, we apply a hierarchical navigable small world, which is an efficient approximate nearest neighbor search algorithm. To quickly prune the search scope, we …


Learning Feature Embedding Refiner For Solving Vehicle Routing Problems, Jingwen Li, Yining Ma, Zhiguang Cao, Yaoxin Wu, Wen Song, Jie Zhang, Yeow Meng Chee Jan 2023

Learning Feature Embedding Refiner For Solving Vehicle Routing Problems, Jingwen Li, Yining Ma, Zhiguang Cao, Yaoxin Wu, Wen Song, Jie Zhang, Yeow Meng Chee

Research Collection School Of Computing and Information Systems

While the encoder–decoder structure is widely used in the recent neural construction methods for learning to solve vehicle routing problems (VRPs), they are less effective in searching solutions due to deterministic feature embeddings and deterministic probability distributions. In this article, we propose the feature embedding refiner (FER) with a novel and generic encoder–refiner–decoder structure to boost the existing encoder–decoder structured deep models. It is model-agnostic that the encoder and the decoder can be from any pretrained neural construction method. Regarding the introduced refiner network, we design its architecture by combining the standard gated recurrent units (GRU) cell with two new …


Intelligent Adaptive Gossip-Based Broadcast Protocol For Uav-Mec Using Multi-Agent Deep Reinforcement Learning, Zen Ren, Xinghua Li, Yinbin Miao, Zhuowen Li, Zihao Wang, Mengyao Zhu, Ximeng Liu, Deng, Robert H. Jan 2023

Intelligent Adaptive Gossip-Based Broadcast Protocol For Uav-Mec Using Multi-Agent Deep Reinforcement Learning, Zen Ren, Xinghua Li, Yinbin Miao, Zhuowen Li, Zihao Wang, Mengyao Zhu, Ximeng Liu, Deng, Robert H.

Research Collection School Of Computing and Information Systems

UAV-assisted mobile edge computing (UAV-MEC) has been proposed to offer computing resources for smart devices and user equipment. UAV cluster aided MEC rather than one UAV-aided MEC as edge pool is the newest edge computing architecture. Unfortunately, the data packet exchange during edge computing within the UAV cluster hasn't received enough attention. UAVs need to collaborate for the wide implementation of MEC, relying on the gossip-based broadcast protocol. However, gossip has the problem of long propagation delay, where the forwarding probability and neighbors are two factors that are difficult to balance. The existing works improve gossip from only one factor, …