Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

2006

Monte Carlo Methods

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Hyperspherical Close-Coupling Calculations For Electron-Capture Cross Sections In Low-Energy Ne¹⁰⁺ +H (1s) Collisions, P. Barragan, Anh-Thu Le, C. D. Lin Jul 2006

Hyperspherical Close-Coupling Calculations For Electron-Capture Cross Sections In Low-Energy Ne¹⁰⁺ +H (1s) Collisions, P. Barragan, Anh-Thu Le, C. D. Lin

Physics Faculty Research & Creative Works

We present total and partial electron-capture cross sections for Ne¹⁰⁺ +H (1s) collisions at energies from 0.01 eV to 1 keV using the hyperspherical close-coupling method. Good agreements with the previous calculations by the classical-trajectory Monte-Carlo method are found for total capture cross section, but not for partial cross sections, especially below about 200 eV/amu. We found that the total cross section is mainly due to the population of n=7 channels and only at energies above 50 eV/amu n = 5,6 channels begin to contribute to the total cross section.


Quantum Phase Transitions Of The Diluted O(3) Rotor Model, Thomas Vojta, Rastko Sknepnek Jan 2006

Quantum Phase Transitions Of The Diluted O(3) Rotor Model, Thomas Vojta, Rastko Sknepnek

Physics Faculty Research & Creative Works

We study the phase diagram and the quantum phase transitions of a site-diluted two-dimensional O(3) quantum rotor model by means of large-scale Monte Carlo simulations. This system has two quantum phase transitions: a generic one for small dilutions and a percolation transition across the lattice percolation threshold. We determine the critical behavior for both transitions and for the multicritical point that separates them. In contrast to the exotic scaling scenarios found in other random quantum systems, all these transitions are characterized by finite-disorder fixed points with power-law scaling. We relate our findings to a recent classification of phase transitions with …


Photoionization Broadening Of The 1s-2s Transition In A Beam Of Atomic Hydrogen, Nikolai N. Kolachevsky, Martin K. Haas, Ulrich D. Jentschura, Maximilian Herrmann, Peter Fendel, Marc P. Fischer, Ronald Holzwarth, Th H. Udem, Christoph H. Keitel, Theodor Wolfgang Hansch Jan 2006

Photoionization Broadening Of The 1s-2s Transition In A Beam Of Atomic Hydrogen, Nikolai N. Kolachevsky, Martin K. Haas, Ulrich D. Jentschura, Maximilian Herrmann, Peter Fendel, Marc P. Fischer, Ronald Holzwarth, Th H. Udem, Christoph H. Keitel, Theodor Wolfgang Hansch

Physics Faculty Research & Creative Works

We consider the excitation dynamics of the two-photon 1S - 2S transition in a beam of atomic hydrogen by 243 nm laser radiation. Specifically, we study the impact of ionization damping on the transition line shape, caused by the possibility of ionization of the 2S level by the same laser field. Using a Monte Carlo simulation, we calculate the line shape of the 1S - 2S transition for the experimental geometry used in the two latest absolute frequency measurements [M. Niering, Phys. Rev. Lett. 84, 5496 (2000) and M. Fischer, Phys. Rev. Lett. 92, 230802 (2004)]. The calculated line shift …