Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

2006

Electron Density Measurement

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Two-Photon Excitation Dynamics In Bound Two-Body Coulomb Systems Including Ac Stark Shift And Ionization, Martin K. Haas, Ulrich D. Jentschura, Christoph H. Keitel, Nikolai N. Kolachevsky, Maximilian Herrmann, Peter Fendel, Marc P. Fischer, Th H. Udem, Ronald Holzwarth, Theodor Wolfgang Hansch, Marlan O. Scully, Girish S. Agarwal May 2006

Two-Photon Excitation Dynamics In Bound Two-Body Coulomb Systems Including Ac Stark Shift And Ionization, Martin K. Haas, Ulrich D. Jentschura, Christoph H. Keitel, Nikolai N. Kolachevsky, Maximilian Herrmann, Peter Fendel, Marc P. Fischer, Th H. Udem, Ronald Holzwarth, Theodor Wolfgang Hansch, Marlan O. Scully, Girish S. Agarwal

Physics Faculty Research & Creative Works

One of the dominant systematic effects that shift resonance lines in high-precision measurements of two-photon transitions is the dynamic (ac) Stark shift. For suitable laser frequencies, the ac Stark shift acquires an imaginary part which corresponds to the rate of resonant one-photon ionization of electrons into a continuum state. At the current level of spectroscopic accuracy, the underlying time-dependent quantum dynamics governing the atomic two-photon excitation process must be well understood, and related considerations are the subject of the present paper. In order to illustrate the basic mechanisms in the transient regime, we investigate an analytically solvable model scenario for …


Radiative Electron Capture Into High- Z Few-Electron Ions: Alignment Of The Excited Ionic States, Andrey S. Surzhykov, Ulrich D. Jentschura, Th H. Stohlker, Stephan Fritzsche Mar 2006

Radiative Electron Capture Into High- Z Few-Electron Ions: Alignment Of The Excited Ionic States, Andrey S. Surzhykov, Ulrich D. Jentschura, Th H. Stohlker, Stephan Fritzsche

Physics Faculty Research & Creative Works

We lay out a unified formalism for the description of radiative electron capture into excited states of heavy, few-electron ions and their subsequent decay, including a full account of many-electron effects and higher-order multipoles of the radiation field. In particular, the density-matrix theory is applied to explore the magnetic sublevel population of the residual ions, as described in terms of alignment parameters. For the electron capture into the initially hydrogenlike U91+ and lithiumlike U89+ uranium projectiles, the alignment parameters are calculated, within the multiconfiguration Dirac-Fock approach, as a function of the collision energy and for different ionic states. …