Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Plasma-Laser Wakefield Acceleration, Jonathan Babu Dec 2021

Plasma-Laser Wakefield Acceleration, Jonathan Babu

Physics

Many texts detailing the derivations and science of Wakefield Acceleration are aimed at graduate and doctorate level scholars, and these may seem intimidating to new physics students. This paper is meant to be an introduction to the nature of plasmas, lasers, laser-plasma interactions, and Laser Wakefield Acceleration (LWFA), with sources given where extra detail may be required. I recognize that this paper is not meant to be an all-encompassing review on the nature of the topics, as these topics are complex and subject of entire textbooks. Instead, I aim to provide an introduction to these topics to a college-level scholar …


Optimization Of An Injection Locked Laser System For Cold Neutral Atom Traps, Elliot M. Lehman Mar 2019

Optimization Of An Injection Locked Laser System For Cold Neutral Atom Traps, Elliot M. Lehman

Physics

Many types of quantum systems are being explored for use in quantum computers. One type of quantum system that shows promise for quantum computing is trapped neutral atoms. They have long coherence times, since they have multiple stable ground states and have minimal coupling with other atoms and their environment, and they can be trapped in arrays, making them individu- ally addressable. Once trapped, they can be initialized and operated on using laser pulses. This experiment utilizes a pinhole diffraction pattern, which can trap atoms in both bright and dark areas. To maximize trap strength, an injection-locked laser amplification system …


Building And Characterization Of Laser Diodes As Well As System Design Of A Dual Wavelength Fabry-Perot Interferometer, Nicholas Czapla May 2012

Building And Characterization Of Laser Diodes As Well As System Design Of A Dual Wavelength Fabry-Perot Interferometer, Nicholas Czapla

Physics

No abstract provided.


Laser-Induced Breakdown Spectroscopy, Connor Drake Jun 2011

Laser-Induced Breakdown Spectroscopy, Connor Drake

Physics

The goal of this work is to use a Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) Laser, spectrometer, and computer to create a Laser Induced Breakdown Spectroscopy (LIBS) system. LIBS utilizes a focused, high-powered, pulsed laser whose peak electric field ionizes materials at the beam focal point, creating localized plasma. The plasma state includes broken molecular bonds, atom/electron-ionization, and excited electrons, which on the macroscopic level is a loud “snap” and a bright spark. In this project, a fiber optic cable is used to capture light emitted from the spark, and direct it into a spectrometer which tallies the number of photons …


Constructing A Magneto-Optical Trap For Cold Atom Trapping, Eric S. Muckley Dec 2009

Constructing A Magneto-Optical Trap For Cold Atom Trapping, Eric S. Muckley

Physics

A magneto-optical trap, or MOT, is a device that traps atoms between three pairs of opposing perpendicular laser beams for cooling the atoms to temperatures near absolute zero. The MOT uses Doppler cooling and a magnetic quadrupole field to trap the atoms; in our case, Rb87 atoms. In the future, the MOT will be used in experiments pertaining to the advancement of quantum computing. In this paper, I explain some of the processes required for construction and operation of the MOT.