Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

A Monte-Carlo Simulation Of Gamma Rays In A Sodium Iodide Detector, Ben Kessler Jun 2023

A Monte-Carlo Simulation Of Gamma Rays In A Sodium Iodide Detector, Ben Kessler

Physics

Gamma rays principally interact with matter through Compton scattering, photoelectric effect, pair production, and triplet production. The focus of this simulation is to study the theoretical energy spectrum created by gamma rays from a Cesium-137 source, which produces gamma photons with an energy of 0.662 MeV. At this energy level, most interactions are results of Compton scatters and the photoelectric effect. Therefore, this simulation only models those two effects on gamma rays. Using Monte Carlo methods and the Metropolis algorithm to sample the probability distributions of the two effects allowed for the simulation of gamma rays in a Sodium Iodide …


Diffusion-Driven Aggregation Of Particles In Quasi-2d Membranes, Oscar Gullickson Rausis Jun 2023

Diffusion-Driven Aggregation Of Particles In Quasi-2d Membranes, Oscar Gullickson Rausis

Physics

Many biological membranes can be modeled as two-dimensional (2D) viscous fluid sheets surrounded by three-dimensional (3D) fluids of different viscosity. Such membranes are dubbed quasi-2D as they exhibit properties of both 2D and 3D fluids. The Saffman length is a parameter that describes the energy exchange between the membrane and bulk fluids and controls the cross-over from 2D to 3D hydrodynamics. We aim to model diffusion-driven aggregation of particles embedded in a quasi-2D membrane. It is known that hydrodynamic interactions between solute particles significantly reduce their aggregation rate in 3D fluids. It is expected that in quasi-2D membranes the reduction …