Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences Publications

2009

Electronic transport

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

The Fast Recovery Dynamics Of A Quantum Dot Semiconductor Optical Amplifier, T. Piwonski, Guillaume Huyet, Et. Al. Mar 2009

The Fast Recovery Dynamics Of A Quantum Dot Semiconductor Optical Amplifier, T. Piwonski, Guillaume Huyet, Et. Al.

Physical Sciences Publications

We consider a rate equation model of a quantum dot semiconductor optical amplifier that takes into account carrier capture, escape, and Pauli blocking processes. We evaluate possible differences between phonon-assisted or Auger processes being dominant for recovery. An analytical solution which corresponds to phonon-assisted interaction is then used to accurately fit experimental recovery curves and allows an estimation of both the carrier capture and escape rates.


Intradot Dynamics Of Inas Quantum Dot Based Electroabsorbers, T. Piwonski, Jaroslaw Pulka, Gillian Madden, Guillaume Huyet, Et. Al. Jan 2009

Intradot Dynamics Of Inas Quantum Dot Based Electroabsorbers, T. Piwonski, Jaroslaw Pulka, Gillian Madden, Guillaume Huyet, Et. Al.

Physical Sciences Publications

The carrier relaxation and escape dynamics of InAs/GaAs quantum dot waveguide absorbers is studied using heterodyne pump-probe measurements. Under reverse bias conditions, we reveal differences in intradot relaxation dynamics, related to the initial population of the dots’ ground or excited states. These differences can be attributed to phonon-assisted or Auger processes being dominant for initially populated ground or excited states, respectively.