Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Platinum Hollow Nanospheres With Different Sizes: Controllable Synthesis And Electrocatalytic Oxidation Toward Methanol, Xuan Lin, Mei-Qin Cheng, Zhong-Jin Shang, Ting Xiong, Xian-Tu Zhang, Wei Tian, Jian-Yun Lin, Qi-Ling Zhong, Bin Ren Dec 2014

Platinum Hollow Nanospheres With Different Sizes: Controllable Synthesis And Electrocatalytic Oxidation Toward Methanol, Xuan Lin, Mei-Qin Cheng, Zhong-Jin Shang, Ting Xiong, Xian-Tu Zhang, Wei Tian, Jian-Yun Lin, Qi-Ling Zhong, Bin Ren

Journal of Electrochemistry

The selenium (Se) templates and hollow platinum (Pthollow) nanospheres with different sizes were controllably synthesized by adjusting the concentration of sodium dodecyl sulphonate (SDSN) (CSDSN, μmol·L-1) which was used as a surfactant. Accordingly, the Pthollow nanospheres modified glassy carbon (GC) electrode (Pthollow/GC) was prepared. The morphology and composition of Pthollow nanospheres were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) techniques. The electrocatalytic activities of Pthollow/GC and electrodeposited Pt nanoparticles modified glassy carbon electrode (Ptnano/GC) toward methanol oxidation …


Cyclic Voltammetric Studies In Adsorption Of Cetyltrimethylammonium Bromide (Ctab) On Au(111) Electrode, Ling Chen, Chang-Deng Xu, Jin-Yu Ye, Chun-Hua Zhen, Shi-Gang Sun Aug 2014

Cyclic Voltammetric Studies In Adsorption Of Cetyltrimethylammonium Bromide (Ctab) On Au(111) Electrode, Ling Chen, Chang-Deng Xu, Jin-Yu Ye, Chun-Hua Zhen, Shi-Gang Sun

Journal of Electrochemistry

Adsorption of cetyltrimethylammonium bromide (CTAB) on Au(111) electrode was investigated by cyclic voltammetry (CV). The results demonstrate that the adsorption of CTAB on Au(111) yields particular CV features. Both the adsorption of CTA+ and the phase change of the surfactant film are surface structure selective. Two pairs of stable sharp peaks that depend on halide species appear upon the adsorption of cationic surfactant on Au(111) electrode. The relationship between the peak current density and the scan rate indicates that the electron transfer reaction was controlled by diffusion process. These CV features are observed for the first time, and reflect …


Electrodeposition Of Copper From A Choline Chloride Based Ionic Liquid, Rostom Ali M., Ziaur Rahman Md., Sankarsaha S. Apr 2014

Electrodeposition Of Copper From A Choline Chloride Based Ionic Liquid, Rostom Ali M., Ziaur Rahman Md., Sankarsaha S.

Journal of Electrochemistry

The electrodeposition of copper from a solution containing copper chloride in either an ethylene glycol (EG)-choline chloride based or a urea-choline chloride based ionic liquid has been carried out onto a steel cathode by constant current and constant potential methods at room temperature. The influences of various experimental conditions on electrodeposition and the morphology of the deposited layers have been investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It is shown that very smooth, shiny and dense with good adherence and bright metallic coloured copper coatings can be obtained from both EG and urea based ionic liquids at …


Fabrication And Electrochemical Properties Of Graphene-Zno Nanocomposite, Chuan-Ling Men, Wan Wang, Jun Cao Apr 2014

Fabrication And Electrochemical Properties Of Graphene-Zno Nanocomposite, Chuan-Ling Men, Wan Wang, Jun Cao

Journal of Electrochemistry

In this work, the graphene-ZnO nanocomposite was successfully synthesized through a one-step solvothermal approach, using ethylene glycol as the solvent and reducing agent. The ZnO particles could be attached to the surfaces and edges of graphene sheet. The electrochemical performance of the nanocomposite was investigated by performing cyclic voltammetry, A.C. impedance and chronopotentiometry tests in 6 mol·L-1 KOH. The results showed that the graphene-ZnO nanocomposite exhibited a nice electrochemical specific capacitance of 115 F·g-1 determined in cyclic voltammetry test, or 71 F·g-1 evaluated in chronopotentiometry test and good reversible charge/discharge behavior.