Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Gordon Wallace

2013

Application

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Fabrication Of Chemical Sensors Using Inkjet Printing And Application To Gas Detection, Karl H. Crowley, Aoife Morrin, Malcolm R. Smyth, Anthony J. Killard, Roderick Shepherd, Marc In Het Panhuis, Gordon G. Wallace Mar 2013

Fabrication Of Chemical Sensors Using Inkjet Printing And Application To Gas Detection, Karl H. Crowley, Aoife Morrin, Malcolm R. Smyth, Anthony J. Killard, Roderick Shepherd, Marc In Het Panhuis, Gordon G. Wallace

Gordon Wallace

This work describes the fabrication of gas sensors using inkjet printing. Sensors were constructed by building up a film of sensing material, such as polyaniline, from aqueous nanoparticulate dispersions. These films were printed over patterned silver interdigitated array designs for the purposes of conductimetric analysis. Unlike screen printing or lithography, inkjet printing does not require stencils or masks, therefore allowing rapid design and prototyping. For this study, polyaniline and modified polyaniline sensors were inkjet printed and assessed for the purposes of gas sensing applications, specifically hydrogen sulfide monitoring.


Nanofiber Mats From Dna, Swnts, And Poly(Ethylene Oxide) And Their Application In Glucose Biosensors, Jun Chen, Chee O. Too, Gordon G. Wallace, Tuan A Nguyen, Violetta Misoska, Yong Liu Mar 2013

Nanofiber Mats From Dna, Swnts, And Poly(Ethylene Oxide) And Their Application In Glucose Biosensors, Jun Chen, Chee O. Too, Gordon G. Wallace, Tuan A Nguyen, Violetta Misoska, Yong Liu

Gordon Wallace

Ultrafine fibers with diameters ranging from 50 to 300 nm were prepared from DNA/single-walled carbon nanotubes (SWNTs)/poly(ethylene oxide) blended dispersion. Well-defined electrospun fibers were obtained by good control of key dispersion properties related to electrospinning, such as ionic conductivity, surface tension, and viscosity. Raman spectroscopy confirmed the presence of SWNT in the resulting fibers, indicating good interaction between DNA and SWNT. The resulting fibers also exhibited electroactive behavior and could be used as an immobilization matrix for a glucose oxidase enzyme biosensor. The sensor response was linear up to 20 mM glucose with a sensitivity of 2.4 mA cm -2 …