Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty of Science - Papers (Archive)

2007

Alpha

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Solution Structure Of Domains Iva And V Of The Tau Subunit Of Escherichia Coli Dna Polymerase Iii And Interaction With The Alpha Subunit, Xun-Cheng Su, Slobodan Jergic, Max A Keniry, Nicholas E. Dixon, Gottfried Otting Jan 2007

Solution Structure Of Domains Iva And V Of The Tau Subunit Of Escherichia Coli Dna Polymerase Iii And Interaction With The Alpha Subunit, Xun-Cheng Su, Slobodan Jergic, Max A Keniry, Nicholas E. Dixon, Gottfried Otting

Faculty of Science - Papers (Archive)

The solution structure of the C-terminal Domain V of the τ subunit of E. coli DNA polymerase III was determined by nuclear magnetic resonance (NMR) spectroscopy. The fold is unique to τ subunits. Amino acid sequence conservation is pronounced for hydrophobic residues that form the structural core of the protein, indicating that the fold is representative for τ subunits from a wide range of different bacteria. The interaction between the polymerase subunits τ and α was studied by NMR experiments where α was incubated with full-length C-terminal domain (τC16), and domains shortened at the C-terminus by 11 …


Crystallization And Diffraction Data Of 1h-3-Hydroxy-4-Oxoquinoline 2,4-Dioxygenase: A Cofactor-Free Oxygenase Of The Alpha/Beta-Hydrolase Family, Ruhu Qi, Susanne Fetzner, Aaron J. Oakley Jan 2007

Crystallization And Diffraction Data Of 1h-3-Hydroxy-4-Oxoquinoline 2,4-Dioxygenase: A Cofactor-Free Oxygenase Of The Alpha/Beta-Hydrolase Family, Ruhu Qi, Susanne Fetzner, Aaron J. Oakley

Faculty of Science - Papers (Archive)

1H-3-Hydroxy-4-oxoquinoline 2,4-dioxygenase (QDO) from Pseudomonas putida 33/1 catalyses the oxygenolysis of 1H-3-hydroxy-4-oxoquinoline to form N-formylanthranilic acid and carbon monoxide without the aid of cofactors. Both N-terminally His6-tagged and native QDO were overexpressed in Escherichia coli and purified by conventional chromatographic procedures. Untagged QDO, but not His6-tagged QDO, was crystallized by the vapour-diffusion method, giving hexagonal bipyramid crystals belonging to space group P6(1)22. Selenomethionine-containing native QDO was prepared and crystallized under identical conditions. The unit-cell parameters were a = b = 90.1, c = 168.6 A, alpha = beta = 90, gamma = 120 degrees. Using synchrotron radiation, these crystals diffract …


The Unstructured C-Terminus Of The Tau Subunit Of Escherichia Coli Dna Polymerase Iii Holoenzyme Is The Site Of Interaction With The Alpha Subunit, Slobodan Jergic, Kiyoshi Ozawa, Neal K. Williams, Xun-Cheng Su, Daniel D. Scott, Samir M. Hamdan, Jeffrey A. Crowther, Gottfried Otting, Nicholas E. Dixon Jan 2007

The Unstructured C-Terminus Of The Tau Subunit Of Escherichia Coli Dna Polymerase Iii Holoenzyme Is The Site Of Interaction With The Alpha Subunit, Slobodan Jergic, Kiyoshi Ozawa, Neal K. Williams, Xun-Cheng Su, Daniel D. Scott, Samir M. Hamdan, Jeffrey A. Crowther, Gottfried Otting, Nicholas E. Dixon

Faculty of Science - Papers (Archive)

The τ subunit of Escherichia coli DNA polymerase III holoenzyme interacts with the α subunit through its C-terminal Domain V, τC16. We show that the extreme C-terminal region of τC16 constitutes the site of interaction with α. The τC16 domain, but not a derivative of it with a C-terminal deletion of seven residues (τC16Δ7), forms an isolable complex with α. Surface plasmon resonance measurements were used to determine the dissociation constant (KD) of the α−τC16 complex to be ∼260 pM. Competition with immobilized τC16 by …