Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Cross-Participant Eeg-Based Assessment Of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks, Ryan G. Hefron, Brett J. Borghetti, Christine M. Schubert Kabban, James Christensen, Justin Estep Apr 2018

Cross-Participant Eeg-Based Assessment Of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks, Ryan G. Hefron, Brett J. Borghetti, Christine M. Schubert Kabban, James Christensen, Justin Estep

Faculty Publications

Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three …


Uncertainty Evaluation In The Design Of Structural Health Monitoring Systems For Damage Detection, Christine M. Schubert Kabban, Richard P. Uber, Kevin J. Lin, Bin Lin, M. Bhuiyan, Victor Giurgiutiu Apr 2018

Uncertainty Evaluation In The Design Of Structural Health Monitoring Systems For Damage Detection, Christine M. Schubert Kabban, Richard P. Uber, Kevin J. Lin, Bin Lin, M. Bhuiyan, Victor Giurgiutiu

Faculty Publications

The validation of structural health monitoring (SHM) systems for aircraft is complicated by the extent and number of factors that the SHM system must demonstrate for robust performance. Therefore, a time- and cost-efficient method for examining all of the sensitive factors must be conducted. In this paper, we demonstrate the utility of using the simulation modeling environment to determine the SHM sensitive factors that must be considered for subsequent experiments, in order to enable the SHM validation. We demonstrate this concept by examining the effect of SHM system configuration and flaw characteristics on the response of a signal from a …


Modeling The Disappearance Of The Neanderthals Using Concepts Of Population Dynamics And Ecology, Michael F. Roberts, Stephen E. Bricher Jan 2018

Modeling The Disappearance Of The Neanderthals Using Concepts Of Population Dynamics And Ecology, Michael F. Roberts, Stephen E. Bricher

Faculty Publications

Current hypotheses regarding the disappearance of Neanderthals (NEA) in Europe fall into two main categories: climate change, and competition. Here we review current research and existing mathematical models that deal with this question, and we propose an approach that incorporates and permits the investigation of the current hypotheses. We have developed a set of differential equations that model population dynamics of anatomically modern humans (AMH) and NEA, their ecological relations to prey species, and their mutual interactions. The model allows investigators to explore each of the two main categories or combinations of both, as well as various forms of competition …


Wavelet Anova Bisection Method For Identifying Simulation Model Bias, Andrew D. Atkinson, Raymond R. Hill, Joseph J. Pignatiello Jr., G. Geoffrey Vining, Edward D. White, Eric Chicken Jan 2018

Wavelet Anova Bisection Method For Identifying Simulation Model Bias, Andrew D. Atkinson, Raymond R. Hill, Joseph J. Pignatiello Jr., G. Geoffrey Vining, Edward D. White, Eric Chicken

Faculty Publications

High-resolution computer models can simulate complex systems and processes in order to evaluate a solution quickly and inexpensively. Many simulation models produce dynamic functional output, such as a set of time-series data generated during a process. These computer models require verification and validation (V&V) to assess the correctness of these simulations. In particular, the model validation effort evaluates if the model is an appropriate representation of the real-world system that it is meant to simulate. However, when assessing a model capable of generating functional output, it is useful to learn more than simply whether the model is valid or invalid. …