Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Identification Of Informativeness In Text Using Natural Language Stylometry, Rushdi Shams Aug 2014

Identification Of Informativeness In Text Using Natural Language Stylometry, Rushdi Shams

Electronic Thesis and Dissertation Repository

In this age of information overload, one experiences a rapidly growing over-abundance of written text. To assist with handling this bounty, this plethora of texts is now widely used to develop and optimize statistical natural language processing (NLP) systems. Surprisingly, the use of more fragments of text to train these statistical NLP systems may not necessarily lead to improved performance. We hypothesize that those fragments that help the most with training are those that contain the desired information. Therefore, determining informativeness in text has become a central issue in our view of NLP. Recent developments in this field have spawned …


Deep Learning Via Stacked Sparse Autoencoders For Automated Voxel-Wise Brain Parcellation Based On Functional Connectivity, Céline Gravelines Apr 2014

Deep Learning Via Stacked Sparse Autoencoders For Automated Voxel-Wise Brain Parcellation Based On Functional Connectivity, Céline Gravelines

Electronic Thesis and Dissertation Repository

Functional brain parcellation – the delineation of brain regions based on functional connectivity – is an active research area lacking an ideal subject-specific solution independent of anatomical composition, manual feature engineering, or heavily labelled examples. Deep learning is a cutting-edge area of machine learning on the forefront of current artificial intelligence developments. Specifically, autoencoders are artificial neural networks which can be stacked to form hierarchical sparse deep models from which high-level features are compressed, organized, and extracted, without labelled training data, allowing for unsupervised learning. This thesis presents a novel application of stacked sparse autoencoders to the problem of parcellating …