Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Theses and Dissertations

2013

Lasers

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

External Cavity Mode-Locked Semiconductor Lasers For The Generation Of Ultra-Low Noise Multi-Gigahertz Frequency Combs And Applications In Multi-Heterodyne Detection Of Arbitrary Optical Waveforms, Josue Davila-Rodriguez Jan 2013

External Cavity Mode-Locked Semiconductor Lasers For The Generation Of Ultra-Low Noise Multi-Gigahertz Frequency Combs And Applications In Multi-Heterodyne Detection Of Arbitrary Optical Waveforms, Josue Davila-Rodriguez

Electronic Theses and Dissertations

The construction and characterization of ultra-low noise semiconductor-based mode-locked lasers as frequency comb sources with multi-gigahertz combline-to-combline spacing is studied in this dissertation. Several different systems were built and characterized. The first of these systems includes a novel mode-locking mechanism based on phase modulation and periodic spectral filtering. This mode-locked laser design uses the same intra-cavity elements for both mode-locking and frequency stabilization to an intra-cavity, 1,000 Finesse, Fabry-Pérot Etalon (FPE). On a separate effort, a mode-locked laser based on a Slab-Coupled Optical Waveguide Amplifier (SCOWA) was built. This system generates a pulse-train with residual timing jitter of


Metrology Of Volume Chirped Bragg Gratings Recorded In Photo-Thermo-Refractive Glass For Ultrashort Pulse Stretching And Compressing, Christopher Lantigua Jan 2013

Metrology Of Volume Chirped Bragg Gratings Recorded In Photo-Thermo-Refractive Glass For Ultrashort Pulse Stretching And Compressing, Christopher Lantigua

Electronic Theses and Dissertations

Chirped Bragg gratings (CBGs) recorded in photo-thermo-refractive (PTR) glass provide a very efficient and robust way to stretch and compress ultra-short laser pulses. These gratings offer the ability to stretch pulses from hundreds of femtoseconds, to the order of 1 ns and then recompress them. However, in order to achieve pulse stretching of this magnitude, 100 mm thick CBGs are needed. Using these CBGs to both stretch, and re-compress the pulse thus requires propagation through 200 mm of optical glass. This therefore demands perfect control of the glass homogeneity, as well as the holographic recording process of the CBG. In …