Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Physical Sciences and Mathematics

Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers Dec 2021

Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers

Doctoral Dissertations

The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear pulse plasma device at Oak Ridge National Laboratory with the purpose of doing the research and development for the heating concepts on the planned full MPEX device. The goal of MPEX is to perform material studies at fusion relevant conditions. To understand the conditions at the material target for performing plasma-material interaction studies the ion temperature and density, the electron temperature and density, and the particle flux and fluence must be known. Impurities within Proto-MPEX can alter the desired conditions at the material target and need to be understood for …


A Connectivity Framework To Explore The Role Of Anthropogenic Activity And Climate On The Propagation Of Water And Sediment At The Catchment Scale, Christos Giannopoulos Dec 2021

A Connectivity Framework To Explore The Role Of Anthropogenic Activity And Climate On The Propagation Of Water And Sediment At The Catchment Scale, Christos Giannopoulos

Doctoral Dissertations

Anthropogenic disturbance in intensively managed landscapes (IMLs) has dramatically altered critical zone processes, resulting in fundamental changes in material fluxes. Mitigating the negative effects of anthropogenic disturbance and making informed decisions for optimal placement and assessment of best management practices (BMPs) requires fundamental understanding of how different practices affect the connectivity or lack thereof of governing transport processes and resulting material fluxes across different landscape compartments within the hillslope-channel continuum of IMLs. However, there are no models operating at the event timescale that can accurately predict material flux transport from the hillslope to the catchment scale capturing the spatial and …


Production Of Protactinium-229 Via Deuteron Irradiation Of Thorium-232, Naser Burahmah Dec 2021

Production Of Protactinium-229 Via Deuteron Irradiation Of Thorium-232, Naser Burahmah

Doctoral Dissertations

225Ac [Actinium-225] is a promising radionuclide for targeted alpha therapy of cancer. 229Pa can lead to the production of 229Th [Thorium-229] and 225Ac [Actinium-225]. Deuteron bombardment on natural thorium targets has been investigated to measure cross sections of protactinium isotopes. In this work, 229Pa [Protactinium-229] excitation function was measured via deuteron energies up to 50 MeV [Mega electron volt] of thin thorium foils. The irradiation took place at Lawrence Berkeley National Laboratory’s (LBNL) 88-Inch Cyclotron. The target processing and analysis were performed at Oak Ridge National Laboratory (ORNL). The target consisted of 4 thin foils …


Interfaces And Dynamics In Polymeric 3d Printing And Crystalline Polymer Blends, Stevenson C. Perryman Dec 2021

Interfaces And Dynamics In Polymeric 3d Printing And Crystalline Polymer Blends, Stevenson C. Perryman

Doctoral Dissertations

This dissertation presents experimental work that provide a foundation to rationally improve fused filament fabrication (FFF) and immiscible blend compatibilization. Objects generated from additive manufacturing processes, such as FFF, have intrinsic structural weaknesses which include two project specific examples: structural anisotropy and irreversible thermal strain. Due to low adhesion between individual print layers that results in macroscopic defects, the mechanical strength of printed objects when force is applied perpendicular to the build orientation is drastically reduced. In the first dissertation chapter, we present a protocol to produce interlayer covalent bonds by depositing multi-amine additives between individual layers of a print …


Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda Oct 2021

Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda

Doctoral Dissertations

This dissertation pertains to generating advanced materials using application-based processing techniques. First, billets consisting of PTFE sintering powders are evaluated using Thermomechancal Analysis. It was found that both shape change and volume change are associated with enthalpic and entropic recoil, respectively. These phenomena, due to melting and stored energy during the powder compaction process, were found to be molecular weight dependent. Additionally, kinetics of the recovery and sintering process were found to be slower in blended specimens than pure samples. Next, the creation of graft copolymers by selectively grafting a second polymer to the amorphous fraction of a semi-crystalline polymer …


Enabling Declarative And Scalable Prescriptive Analytics In Relational Data, Matteo Brucato Oct 2021

Enabling Declarative And Scalable Prescriptive Analytics In Relational Data, Matteo Brucato

Doctoral Dissertations

Constrained optimization problems are at the heart of significant applications in a broad range of domains, including finance, transportation, manufacturing, and healthcare. They are often found at the final step of business analytics, namely prescriptive analytics, to allow businesses to transform a rich understanding of data, typically provided by advanced predictive models, into actionable decisions. Modeling and solving these problems has relied on application-specific solutions, which are often complex, error-prone, and do not generalize. Our goal is to create a domain-independent, declarative approach, supported and powered by the system where the data relevant to these problems typically resides: the database. …


Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou Aug 2021

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou

Doctoral Dissertations

The motivation of this work comes from one of the major problems of emerging non-aqueous flow battery (NAFB) that a separator or membrane which facilitates conductivity and blocks redox species crossover does not exist. Although many aspects of principles can be mirrored from mature fuel cell and aqueous flow battery, it is found that some well-defined membrane properties in aqueous systems such as swelling, transport and interactions are different in non-aqueous solvents to some extent. However, the approach of this work does follow the way perfluorosulfonate ion exchange membrane (PFSA) facilitated development of fuel cell and aqueous flow battery in …


Fabrication Of Specialized Scintillators For Nuclear Security Applications, Cordell James Delzer Aug 2021

Fabrication Of Specialized Scintillators For Nuclear Security Applications, Cordell James Delzer

Doctoral Dissertations

Radiation detectors are important for a variety of fields including medical imaging, oil drilling, and nuclear security. Within nuclear security, they can serve a multitude of purposes whether that be imaging, localization, isotopic identification, or even just activity measurement. Even without directly seeing a nuclear material it is often able to notice their existence without a detector. Scintillators make up an important part of these detectors due to their large intrinsic efficiency, low cost, large volume, and relatively low upkeep. Due to the importance of the large number of purposes these scintillators may be used for, it can often be …


Development Of Density-Functional Tight-Binding Methods For Chemical Energy Science, Quan Vuong Aug 2021

Development Of Density-Functional Tight-Binding Methods For Chemical Energy Science, Quan Vuong

Doctoral Dissertations

Density-functional tight-binding (DFTB) method is an approximation to the popular first-principles density functional theory (DFT) method. Recently, DFTB has gained considerable visibility due to its inexpensive computational requirements that confer it the capability of sustaining long-timescale reactive molecular dynamics (MD) simulations while providing an explicit description of electronic structure at all time steps. This capability allows the description of bond formation and breaking processes, as well as charge polarization and charge transfer phenomena, with accuracy and transferability beyond comparable classical reactive force fields. It has thus been employed successfully in the simulation of many complex chemical processes. However, its applications …


Collector Probe Measurements Of Sol Impurity Accumulation And The Implications Of Sol Flows On The Accumulation Amount, Shawn Zamperini Aug 2021

Collector Probe Measurements Of Sol Impurity Accumulation And The Implications Of Sol Flows On The Accumulation Amount, Shawn Zamperini

Doctoral Dissertations

A collector probe in its simplest form is a rod inserted into a plasma so that impurities are deposited onto it. These probes are then removed and analyzed to determine the deposition profile both along the length of probe and across the width of it. This dissertation covers a series of collector probes experiments and accompanying interpretive modelling all with the main goal of providing evidence for long-hypothesized near scrape-off layer (SOL) accumulation of impurities that can lead to efficient core contamination. The structure of this dissertation is as follows. A brief outline of fusion energy and why we need …


Designing Stimuli-Responsive Nanocomposites To Investigate Interface Dynamics, Huyen Vu Jul 2021

Designing Stimuli-Responsive Nanocomposites To Investigate Interface Dynamics, Huyen Vu

Doctoral Dissertations

Inspired by nature, this research focuses on designing multifunctional renewable nanocomposites with high toughness and stimuli-responsiveness. In recent years, cellulose nanocrystals (CNCs) have been explored due to their abundance, renewable resource, and unique mechanical strength and structural coloration. CNCs naturally self-assemble into the helicoidal (Bouligand) structure that effectively endure high impacts but is brittle without an attendant soft phase. A thermoresponsive polymer, poly(diethylene glycol methyl ether methacrylate) (PMEO2MA), was incorporated into CNCs via evaporation-induced self-assembly to improve toughness of the resulting nanocomposites and to study responses in polymer dynamics under varying temperature and humidity conditions. To study microscopic …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango Jun 2021

Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango

Doctoral Dissertations

Protein drugs, including antibodies, are rapidly emerging as the top-selling pharmaceuticals worldwide owing to their unparalleled specificity and biocompatibility. However, none of the currently-approved protein therapeutics act intracellularly, despite the vast majority of potential drug targets residing within the cell. This is due mainly to the paramount challenge of transporting hydrophilic macromolecular cargoes across the plasma membrane. As such, effective protein carriers are essential for the advancement of modern medicine. Despite significant advances, many challenges still plague protein delivery. Following membrane transduction, delivery vectors must preserve the structure and activity of their cargoes while transporting them to the correct subcellular …


Local Dynamics And Atomic-Level Structures In Metallic Liquids And Glasses, Zengquan Wang May 2021

Local Dynamics And Atomic-Level Structures In Metallic Liquids And Glasses, Zengquan Wang

Doctoral Dissertations

Structure and dynamics at the atomic level in metallic glasses and liquids are poorly understood when compared to the crystalline solids. For instance, even though viscosity is the basic property of liquids, its atomistic origin is not well elucidated. Also, the physics of the fragility of liquids and the crossover phenomenon is far from full understanding. Earlier, through molecular dynamics (MD) simulations a direct connection was found between the timescale describing the macroscopic viscous behavior, the Maxwell relaxation time (tM = h/G, h is the shear viscosity and G is the high-frequency shear modulus) and …


Optimal Communication Structures For Concurrent Computing, Andrii Berdnikov May 2021

Optimal Communication Structures For Concurrent Computing, Andrii Berdnikov

Doctoral Dissertations

This research focuses on communicative solvers that run concurrently and exchange information to improve performance. This “team of solvers” enables individual algorithms to communicate information regarding their progress and intermediate solutions, and allows them to synchronize memory structures with more “successful” counterparts. The result is that fewer nodes spend computational resources on “struggling” processes. The research is focused on optimization of communication structures that maximize algorithmic efficiency using the theoretical framework of Markov chains. Existing research addressing communication between the cooperative solvers on parallel systems lacks generality: Most studies consider a limited number of communication topologies and strategies, while the …


Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice May 2021

Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice

Doctoral Dissertations

Producing a coordinated motion such as walking is, at its root, the result of healthy communication pathways between the central nervous system and the musculoskeletal system. The central nervous system produces an electrical signal responsible for the excitation of a muscle, and the musculoskeletal system contains the necessary equipment for producing a movement-driving force to achieve a desired motion. Motor control refers to the ability an individual has to produce a desired motion, and the complexity of motor control is a mathematical concept stemming from how the electrical signals from the central nervous system translate to muscle activations. Exercising a …


An Analysis Of Modern Password Manager Security And Usage On Desktop And Mobile Devices, Timothy Oesch May 2021

An Analysis Of Modern Password Manager Security And Usage On Desktop And Mobile Devices, Timothy Oesch

Doctoral Dissertations

Security experts recommend password managers to help users generate, store, and enter strong, unique passwords. Prior research confirms that managers do help users move towards these objectives, but it also identified usability and security issues that had the potential to leak user data or prevent users from making full use of their manager. In this dissertation, I set out to measure to what extent modern managers have addressed these security issues on both desktop and mobile environments. Additionally, I have interviewed individuals to understand their password management behavior.

I begin my analysis by conducting the first security evaluation of the …


Susceptibility Of Riverine Fishes To Anthropogenically-Linked Trauma: Strikes From Hydropower Turbine Blades, Ryan K. Saylor May 2021

Susceptibility Of Riverine Fishes To Anthropogenically-Linked Trauma: Strikes From Hydropower Turbine Blades, Ryan K. Saylor

Doctoral Dissertations

Hydropower accounts for nearly 40% of renewable electricity generation in the US; however, dams significantly impact the surrounding aquatic ecosystems. One of the most visible impacts of hydropower―beyond the dam itself―is the direct negative impacts (injury or death) to fish populations that must pass through hydropower turbines to access desired downstream habitat. During passage, fishes face many potential stressors that can cause severe injuries and often leads to high rates of mortality. In this dissertation, I have focused on quantifying how fishes respond to impacts from turbine blades that may occur during turbine passage. Laboratory research into blade strike impact …


Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova May 2021

Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova

Doctoral Dissertations

Bio-based plastics and composites have seen increased industry adoption in recent years due to growing demand for materials with a low carbon footprint. The use of lignin as a feedstock for polymers has seen growing interest as the concept of an integrated cellulosic biorefinery gains traction and advances the need to use all components of separated biomass for value-added applications. Historically, use of lignin in thermoplastic and elastomeric copolymers and blends has been bottlenecked by the inability to introduce lignin content above 30 weight percent due to difficulties with interfacial adhesion of lignin with other soft segments. Efforts to overcome …


Human Fatigue Predictions In Complex Aviation Crew Operational Impact Conditions, Suresh Rangan May 2021

Human Fatigue Predictions In Complex Aviation Crew Operational Impact Conditions, Suresh Rangan

Doctoral Dissertations

In this last decade, several regulatory frameworks across the world in all modes of transportation had brought fatigue and its risk management in operations to the forefront. Of all transportation modes air travel has been the safest means of transportation. Still as part of continuous improvement efforts, regulators are insisting the operators to adopt strong fatigue science and its foundational principles to reinforce safety risk assessment and management. Fatigue risk management is a data driven system that finds a realistic balance between safety and productivity in an organization. This work discusses the effects of mathematical modeling of fatigue and its …


Machine Learning With Topological Data Analysis, Ephraim Robert Love May 2021

Machine Learning With Topological Data Analysis, Ephraim Robert Love

Doctoral Dissertations

Topological Data Analysis (TDA) is a relatively new focus in the fields of statistics and machine learning. Methods of exploiting the geometry of data, such as clustering, have proven theoretically and empirically invaluable. TDA provides a general framework within which to study topological invariants (shapes) of data, which are more robust to noise and can recover information on higher dimensional features than immediately apparent in the data. A common tool for conducting TDA is persistence homology, which measures the significance of these invariants. Persistence homology has prominent realizations in methods of data visualization, statistics and machine learning. Extending ML with …


Multi-Scale Computational Modeling Of Metal/Ceramic Interfaces, Abu Shama Mohammad Miraz May 2021

Multi-Scale Computational Modeling Of Metal/Ceramic Interfaces, Abu Shama Mohammad Miraz

Doctoral Dissertations

Multi-scale atomistic calculations were carried out to understand the interfacial features that dictate the mechanical integrity of the metal/ceramic nanolaminates. As such, first principles density functional theory (DFT) calculations were performed to understand the electronic and atomistic factors governing adhesion and resistance to shear for simple metal/ceramic interfaces, whereas molecular dynamics (MD) simulations were performed to observe the impact of interfacial structures, such as misfit dislocation network geometries and orientation relationships, on interfacial mechanical properties.

For the DFT investigation, we choose metals with different crystal structures, namely - Cu (fcc), Cr (bcc) and Ti (hcp) along with a variety of …


Electrospinning Fibers Via Complex Coacervation, Xiangxi Meng Apr 2021

Electrospinning Fibers Via Complex Coacervation, Xiangxi Meng

Doctoral Dissertations

Electrospun fibers are high-surface-area materials widely used in applications ranging from batteries to wound dressings. Typically, an electrospinning precursor solution is prepared by dissolving a high-molecular-weight polymer in an organic solvent to form a sufficiently entangled solution. Our approach bypasses the requirement for entanglements and completely avoids toxic chemicals by focusing on using an aqueous complex coacervates solution. Coacervates are a dense, polymer-rich liquid phase resulting from the associative electrostatic complexation of oppositely charged macroions. We were the first to demonstrate that liquid complex coacervates could be successfully electrospun into polyelectrolyte complex (PEC) fibers. A canonical coacervate system was formed …


Reveal Wind Loading Of Tornadoes And Hurricanes On Civil Structures Towards Hazard-Resistant Design, Ryan Honerkamp Jan 2021

Reveal Wind Loading Of Tornadoes And Hurricanes On Civil Structures Towards Hazard-Resistant Design, Ryan Honerkamp

Doctoral Dissertations

"Extreme winds impacting civil structures lead to death and destruction in all regions of the world. Specifically, tornadoes and hurricanes impact communities with severe devastation. On average, 1200 tornadoes occur in the United States every year. Tornadoes occur predominantly in the Central and Southeastern United States, accounting for an annual $1 billion in economic losses, 1500 injuries, and 90 deaths. The Joplin, MO Tornado in 2011 killed 161 people, injured more than 1000, destroyed more than 8000 structures, and caused $2.8 billion of property loss. Hurricanes occur predominantly on the United States East coast regions and along the coast of …


Relating Detonation Parameters To The Detonation Synthesis Of Nanomaterials, Martin Langenderfer Jan 2021

Relating Detonation Parameters To The Detonation Synthesis Of Nanomaterials, Martin Langenderfer

Doctoral Dissertations

“This research investigates the physical and chemical processes that contribute to the detonation synthesis of silicon carbide nanoparticles. Bulk production of SiC nanoparticles through detonation is possible due to pressures achieved over 20 GPa and temperatures over 2000 K as well as quenching rates in excess of 13 billion K/second. These conditions catalyze reaction and bottom-up molecular growth while retaining particles < 100 nm in diameter. In this work, detonation synthesis of SiC was demonstrated by incorporation of polycarbosilane, an SiC precursor material, into an RDX/TNT explosive matrix prior to detonation. Detonation Synthesis of SiC was also accomplished by reacting elemental silicon with carbon liberated by the detonation of negatively oxygen balanced TNT. Hydrodynamic simulation of a 60:40 mass ratio RDX/TNT detonation created conditions thermodynamically suitable to produce cubic silicon carbide within the first 500 nanoseconds after the passage of the detonation wave while carbon remains chemically reactive for molecular formation. Simulations and experimental tests indicated that loading configuration and impedance mismatch of the precursor additives used in detonation synthesis results in conditions in the additives that exceed the accepted detonation pressure of the explosive by greater than three times. Finally, a full factorial experimental design showed increasing silicon concentration, reducing silicon size, and reducing oxygen balance by adjusting the ratio of RDX to TNT decreased the explosives detonation pressure by 20% and increased the soot yield and concentration of SiC observed in the detonation products by 82% and 442% respectively”--Abstract, page iv.


Designing Transition Metal Chalcogenides Electrocatalyst Surfaces For High-Efficiency Water Oxidation, Umanga De Silva Jan 2021

Designing Transition Metal Chalcogenides Electrocatalyst Surfaces For High-Efficiency Water Oxidation, Umanga De Silva

Doctoral Dissertations

”The rising demand for energy security and reducing fossil fuel dependence has prompted researchers to search for a clean, sustainable, and efficient energy generation system with low environmental impact. Water electrolysis has been identified as one of the most important processes satisfying the above needs to generate hydrogen as a clean fuel. Two half-cell reactions of oxygen evolution reaction (OER) at the anode and hydrogen evolution reaction (HER) at the cathode comprise the main process of water electrolysis. However, the oxygen evolution reaction is the most crucial step for efficient water splitting. Traditionally, metal oxides have been utilized as catalysts …


Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali Jan 2021

Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali

Doctoral Dissertations

"Shovel-truck systems are the most widely employed excavation and material handling systems for surface mining operations. During this process, a high-impact shovel loading operation (HISLO) produces large forces that cause extreme whole body vibrations (WBV) that can severely affect the safety and health of haul truck operators. Previously developed solutions have failed to produce satisfactory results as the vibrations at the truck operator seat still exceed the “Extremely Uncomfortable Limits”. This study was a novel effort in developing deep learning-based solution to the HISLO problem.

This research study developed a rigorous mathematical model and a 3D virtual simulation model to …


Exposure Assessment Of Emerging Contaminants: Rapid Screening And Modeling Of Plant Uptake, Majid Bagheri Jan 2021

Exposure Assessment Of Emerging Contaminants: Rapid Screening And Modeling Of Plant Uptake, Majid Bagheri

Doctoral Dissertations

"With the advent of new chemicals and their increasing uses in every aspect of our life, considerable number of emerging contaminants are introduced to environment yearly. Emerging contaminants in forms of pharmaceuticals, detergents, biosolids, and reclaimed wastewater can cross plant roots and translocate to various parts of the plants. Long-term human exposure to emerging contaminants through food consumption is assumed to be a pathway of interest. Thus, uptake and translocation of emerging contaminants in plants are important for the assessment of health risks associated with human exposure to emerging contaminants. To have a better understanding over fate of emerging contaminants …


Fiber Optic Sensors For Industry And Military Applications, Yiyang Zhuang Jan 2021

Fiber Optic Sensors For Industry And Military Applications, Yiyang Zhuang

Doctoral Dissertations

"Fiber optic sensors (FOSs) have been widely used for measuring various physical and chemical measurands owing to their unique advantages over traditional sensors such as small size, high resolution, distributed sensing capabilities, and immunity to electromagnetic interference. This dissertation focuses on the development of robust FOSs with ultrahigh sensitivity and their applications in industry and military areas.

Firstly, novel fiber-optic extrinsic Fabry-Perot interferometer (EFPI) inclinometers for one- and two-dimensional tilt measurements with 20 nrad resolution were demonstrated. Compared to in-line fiber optic inclinometers, an extrinsic sensing motif was used in our prototype inclinometer. The variations in tilt angle of the …


Semi-Empirical Modeling Of Liquid Carbon's Containerless Solidification, Philip C. Chrostoski Jan 2021

Semi-Empirical Modeling Of Liquid Carbon's Containerless Solidification, Philip C. Chrostoski

Doctoral Dissertations

“Elemental carbon has important structural diversity, ranging from nanotubes through graphite to diamond. Previous studies of micron-size core/rim carbon spheres extracted from primitive meteorites suggest they formed around such stars via the solidification of condensed carbon-vapor droplets, followed by gas-to-solid carbon coating to form the graphite rims. Similar core/rim particles result from the slow cooling of carbon vapor in the lab. The long-range carbon bond-order potential was used to computationally study liquid-like carbon in (1.8 g/cm3) periodic boundary (tiled-cube supercell) and containerless (isolated cluster) settings. Relaxations via conjugate-gradient and simulated-annealing nucleation and growth simulations using molecular dynamics were …