Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Dissertations

Applied sciences

Polymer Chemistry

Publication Year

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

Investigations Toward Tunability Of Mechanical, Thermal, And Impact Properties Of Thiol-Ene Networks For Novel High Energy Absorbing Materials, Olivia Devon Mcnair May 2013

Investigations Toward Tunability Of Mechanical, Thermal, And Impact Properties Of Thiol-Ene Networks For Novel High Energy Absorbing Materials, Olivia Devon Mcnair

Dissertations

The UV polymerization of thiols with electron rich alkenes is a highly resourceful reaction that has been utilized by scientists within various disciplines to produce an even more versatile display of applications. This dissertation focuses on a newer application, thiol-ene network (TEN) materials for energy absorption devices. TEN networks display a host of positive polymer properties such as low stress, high optical clarity and uniformity, but they also suffer from unfavorable mechanical properties such as low toughness and elongation at break. The poor mechanical properties demonstrated by TENs prohibit them as choice materials for applications requiring thicker material forms, including …


Synthesis Of Polyhedral Oligomeric Silsesquioxane (Poss) Functionalized Carbon Nanotubes For Improved Dispersion In Polyurethane Films, Xiaonan Kou May 2013

Synthesis Of Polyhedral Oligomeric Silsesquioxane (Poss) Functionalized Carbon Nanotubes For Improved Dispersion In Polyurethane Films, Xiaonan Kou

Dissertations

Carbon nanotube (CNT) polymer nanocomposites are promising advanced materials. These materials exhibit the advantages of traditional polymeric materials, such as being light weight and easy to process, combined with the potential to exhibit enhanced mechanical, thermal and electrical properties compared to pure polymers. To achieve substantial improvement of composite properties at low CNT loading, uniform dispersion of CNTs in the polymer matrix and strong CNT-polymer interfacial interaction are needed. However, it is difficult to achieve adequate dispersion and interfacial interactions due to the inert nature of CNTs. In this project, polyhedral oligomeric silsequioxane (POSS) will be used as a dispersing …


Dynamic Bioactive Stimuli-Responsive Polymeric Surfaces, Heather Marie Pearson May 2013

Dynamic Bioactive Stimuli-Responsive Polymeric Surfaces, Heather Marie Pearson

Dissertations

This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of –COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface …


Understanding Corrosion Protection And Failure Through Model Polymers In Thin Films, Joshua Smith Hanna Dec 2012

Understanding Corrosion Protection And Failure Through Model Polymers In Thin Films, Joshua Smith Hanna

Dissertations

When developing a model polymeric system to facilitate in the detection of molecular and microscopic events that preface macroscopic corrosive failure; a better understanding of how polymers can indicate corrosion was accomplished. Initially, the thought that molecular chain scission as a necessity for corrosion to occur had to be tested. Through the utilization of high molecular weight thermoplastic (HMWTP) model polymers, it was found that corrosion protection did not correlate to the quantity of weak bonds within an epoxy-amine polymer matrix. Therefore more sensitive methods of detecting corrosion had to be developed since changes within the polymer matrix did not …


Polymer Surface Engineering Via Thiol-Mediated Reactions, Ryan Matthew Hensarling Dec 2012

Polymer Surface Engineering Via Thiol-Mediated Reactions, Ryan Matthew Hensarling

Dissertations

Synthesis of polymer brushes to decorate a surface with desired functionality typically involves surface-initiated polymerization (SIP) of functional, but non-reactive monomers. This approach suffers major drawbacks associated with synthesizing sufficiently thick polymer brushes containing surface-attached polymer chains of high molecular weight at high grafting density (i.e. cost, synthetic effort and functional group intolerance during polymerization). The research herein seeks to circumvent these limitations by the decoration of surfaces with polymer chains bearing specific pendent functional groups amenable to post-polymerization modification (PPM). In particular, this dissertation leverages PPM via a specific class of click reactions – thiol-click – that 1) enables …


Physical And Electrical Properties Of Trimetallic Nitride Template Endohedral Metallofullerenes And Their Polymer Nanocomposites, Hanaa Mohammed Ahmed Dec 2011

Physical And Electrical Properties Of Trimetallic Nitride Template Endohedral Metallofullerenes And Their Polymer Nanocomposites, Hanaa Mohammed Ahmed

Dissertations

The main objective of this study was characterization of pure metallic nitride fullerene, MNF, and MNF containing polymers to evaluate these materials as suitable devices for tunable applications. Polymer-fullerene nanocomposites consisting of linear polyurethane (PU) segments crosslinked via polyhydroxylated fullerenes (C60 and Sc3N@C80, a metallic nitride fullerene) were prepared and characterized for their mechanical and dielectric properties using dynamic mechanical analysis (DMA) and broadband dielectric spectroscopic techniques. Polyhydroxylated fullerenes C60(OH)29 and Sc3N@C80(OH)18 were synthesized in a high yield through a solid-state high sheer ball-milling procedure and were …


Effects Of Molecular Architecture On Fluid Ingress Behavior Of Glassy Polymer Networks, Matthew Blaine Jackson Dec 2011

Effects Of Molecular Architecture On Fluid Ingress Behavior Of Glassy Polymer Networks, Matthew Blaine Jackson

Dissertations

This manuscript demonstrates the synthesis of glassy polymer network isomers to control morphological variations and study solvent ingress behavior independent of chemical affinity. Well-controlled network architectures with varying free volume average hole-sizes have been shown to substantially influence solvent ingress within glassy polymer networks. Bisphenol-A diglycidyl ether (DGEBA), bisphenol-F diglycidyl ether (DGEBF), Triglycidyl p-aminophenol (pAP, MY0510), Triglycidyl maminophenol (mAP, MY0610), and tetraglydicyl-4,4’-diamino-diphenyl methane (TGDDM, MY721) were cured with 3,3’- and 4,4’-diaminodiphenyl sulfone (DDS) at a stoichiometric ratio of 1:1 oxirane to amine active hydrogen to generate a series of network architectures with an average free volume hole-size (Vh) …


Free Volume Studies Of Various Polymeric Systems Using Positron Annihilation And Pvt-Eos Analyses, Mukul Kaushik Dec 2011

Free Volume Studies Of Various Polymeric Systems Using Positron Annihilation And Pvt-Eos Analyses, Mukul Kaushik

Dissertations

The glass transition phenomenon and free volume behavior below and above the glass transition temperature of various polymeric systems have been investigated. Several novel polymeric systems were considered for this study. Two generations of hyperbranched polyols, H40 and H20, were selected due to large number of hydroxyl groups on the periphery and within the bulk. The effect of hydrogen bonds and molecular weight was related with the glass transition and free volume behavior for the whole range of experimental temperature. The free volume behavior was experimentally studied using PVT and PALS to determine occupied volume, fractional free volume and number …


Development And Utilization Of Digital Image Correlation Techniques For The Study Of Structural Isomerism Effects On Strain Development In Epoxy Network Glasses, Stephen Robert Heinz Dec 2011

Development And Utilization Of Digital Image Correlation Techniques For The Study Of Structural Isomerism Effects On Strain Development In Epoxy Network Glasses, Stephen Robert Heinz

Dissertations

The specific aim of this dissertation is to present the findings regarding the effects of molecular structure on macroscopic mechanical performance and strain development in epoxy networks. Network molecular structure was altered through monomer isomerism and crosslink density/molecular weight between crosslinks. The use of structural isomerism provided a pathway for altering mechanical performance while maintaining identical chemical composition within the network. Isomerism was investigated primarily by the curing of diglycidyl ether of bisphenol A (DGEBA) using either the para- or meta-substituted derivatives of diaminodiphenyl sulfone (DDS). Additional insights into isomerism were gained through the investigation of networks composed of either …


Self-Repairable Polymeric Networks: Synthesis And Network Design, Biswajit Ghosh Aug 2011

Self-Repairable Polymeric Networks: Synthesis And Network Design, Biswajit Ghosh

Dissertations

This dissertation describes the design, synthesis and development of a new class of polymeric networks that exhibit self-repairing properties under UV exposure. It consists of two parts: (a) modification and synthesis of oxetane (OXE), and oxolane (OXO) substituted chitosan (CHI) macromonomer, and (b) design, and synthesis of self-repairing polyurethane (PUR) networks consisting of modified chitosan. Unmodified CHI consisting of acetamide (-NHCOCH3), primary hydroxyl (-OH), and amine (-NH2) functional groups were reacted with OXE or OXO compounds under basic conditions in order to substitute the 1° –OH groups, and at the same time, convert -NHCOCH3 functionalities …


Precision Synthesis Of Functional Materials Via Raft Polymerization And Click-Type Chemical Reactions, Joel Diez Flores Aug 2011

Precision Synthesis Of Functional Materials Via Raft Polymerization And Click-Type Chemical Reactions, Joel Diez Flores

Dissertations

The need to tailor polymeric architectures with specific physico-chemical properties via the simplest, cleanest, and most efficient synthetic route possible has become the ultimate goal in polymer synthesis. Recent progress in macromolecular science, such as the discoveries of controlled/“living” free radical polymerization (CRP) methods, has brought about synthetic capabilities to prepare (co)polymers with advanced topologies, predetermined molecular weights, narrow molecular weight distributions, and precisely located functional groups. In addition, the establishment of click chemistry has redefined the selected few highly efficient chemical reactions that become highly useful in post-polymerization modification strategies. Hence, the ability to make well-defined topologies afforded by …


Modification And Evaluation Of Fuel Cell Membranes, Amol Prataprao Nalawade May 2011

Modification And Evaluation Of Fuel Cell Membranes, Amol Prataprao Nalawade

Dissertations

The primary goals of this study were modification of existing Nafion® membranes and characterization of newly developed hydrocarbon-based membranes for high temperature fuel cell applications. Various Nafion®/silicate nanocomposites were formulated via in situ sol-gel reactions for tetraethylorthosilicate. Different silicate composition profiles generated across membrane cross-sections were investigated by EDAX/ESEM. Composite water uptake, proton conductivity and fuel cell performance were comparable to that of unmodified Nafion®. Tafel analysis showed better electrode kinetics for composites having more silicate in the middle and less or no silicate at electrolyte-electrode interfaces. All composites showed reduced fuel cross-over and superior …


Photopolymerized Thiol-Ene Networks For Gas Barrier And Membrane Applications, Luke Kwisnek May 2011

Photopolymerized Thiol-Ene Networks For Gas Barrier And Membrane Applications, Luke Kwisnek

Dissertations

Gas transport and free volume properties of photopolymerized thiol-ene networks for various applications are reported. For basic, commercially-available thiol-ene formulations, oxygen permeation was strictly dependent on the difference between Ttest (room temperature for this work) and network Tg. Networks with Tg near Ttest demonstrated the lowest values of permeability, diffusivity, and solubility. A robust, high-barrier network was selected for further modification. New networks with embedded functionality were formed using a two-step approach. Thio-Michael addition of a tetrathiol to monofunctional acrylates formed new functional thiol monomers. These functional thiols were combined with an isocyanurate-based triene and …


Synthesis And Electrical Properties Of Functional Block Copolymer/Inorganic Nanocomposite Materials, Hongying Chen Dec 2010

Synthesis And Electrical Properties Of Functional Block Copolymer/Inorganic Nanocomposite Materials, Hongying Chen

Dissertations

Sulfonated poly[styrene-b-ethylene-co-butylene-b-styrene] (sSEBS) block copolymers/inorganic nanocomposite materials were synthesized via in situ formation of inorganic fillers and characterized particularly for their dielectric properties and proton conductivities.

In preparation of sSEBS/SrTiO3 nanocomposites, titanium (IV) isopropoxide [Ti(OPri)4] complex was diffused into sSEBS film, followed by subsequent hydrolysis of [Ti(OPr i)4], diffusion of strontium cations in sSEBS domains, and in situ formation of crystalline SrTiO3. sSEBS with sulfonation degree of 38.1% and 65.0% were employed, and relevant sSEBS/SrTiO3 composites contain SrTiO3 of 10-15 wt%. Elemental composition characterization with ESEM/EDX indicated uniform distribution of …