Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Structure-Property Correlation In Cyclopolymerization Of New Acrylate-Based Functional Monomers, Huseyin Tas Aug 2010

Structure-Property Correlation In Cyclopolymerization Of New Acrylate-Based Functional Monomers, Huseyin Tas

Dissertations

New ether dimer; (ED-Od) and (ED-Eh) and diester; (ODE) and (EHDE) derivatives of α-(hydroxymethyl)acrylate, each having two octadecyl and 2-ethylhexyl side chains respectively, and an amine-linked di(2-ethylhexyl)acrylate (AL-Eh), having three 2-ethylhexyl side chains, were synthesized and (co)polymerized to evaluate the effects of differences in the structures of the monomers on final (co)polymer properties, particularly glass transition temperature, Tg. The free radical polymerizations of these monomers yielded high molecular weight polymers. Cyclopolymer formation of ED-Od, ED-Eh and AL-Eh was confirmed by 13C NMR analysis and the cyclization efficiencies were found to be very high (~100%). Copolymers of ED-Od, ODE, ED-Eh, EHDE, …


Design, Synthesis, And Polymerization Of Novel Heterocyclic Monomers As Precursors For Functional Polyester, Poly(Ester Amide)S And Polyamides, Eylem Tarkin-Tas Aug 2010

Design, Synthesis, And Polymerization Of Novel Heterocyclic Monomers As Precursors For Functional Polyester, Poly(Ester Amide)S And Polyamides, Eylem Tarkin-Tas

Dissertations

The research presented in this dissertation involves the synthesis and polymerization of heterocyclic monomers which pave the way to biodegradable polyester nanocomposites, functional polyesters or poly(ester amide)s, functional polyamides and supramolecular polymers. The key monomers are ε-caprolactone, γ-acetamido-ε- caprolactone, γ-ethylene ketal-ε-caprolactam and α-amino-ε-caprolactam.

Poly(ε-caprolactone) organo-modified montmorillonite nanocomposites were prepared by in-situ polymerization using dibutyltin dimethoxide as initiator/catalyst. The montmorillonite was first modified with 1-decyl-2-methyl-3-(11-hydroxyundecyl)- imidazolium cation. The hydroxyl functionality was used for not only initiating polymer chains from the surface of the clay platelets but also for grafting polymer chains to the surface by acting as a reversible chain transfer …


Nanomaterials From Biologically Active Molecules: Self-Assembly And Molecular Recognition, Min Yu May 2010

Nanomaterials From Biologically Active Molecules: Self-Assembly And Molecular Recognition, Min Yu

Dissertations

This dissertation describes the development of molecular assemblies and molecular recognition of phospholipids (PLs) that exhibit potential applications in emerging nanotechnologies. It consists of two parts: (1) structural features of PLs responsible for recognition of synthetic copolymers, and (2) design, synthesis and analysis of magnetic nanotubes obtained from PLs with a common theme of colloidal synthesis served as a platform for film formation and nano-assemblies of nanotubes. Poly(methyl methacrylate/n-butyl acrylate) (p-MMA/nBA) colloidal particles that were stabilized by 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) PLs were synthesized, and upon the particle coalescence, PL stratification resulted in the formation of surface localized ionic clusters (SLICs). These …


Multi Stimuli-Responsive Copolymers Obtained From Colloidal Dispersions, Fang Liu May 2010

Multi Stimuli-Responsive Copolymers Obtained From Colloidal Dispersions, Fang Liu

Dissertations

This dissertation describes the design, synthesis, and development of multi stimuli-responsive random copolymers that exhibit collective responsiveness to temperature, pH or electromagnetic radiation. New colloidal particles of poly(N-(DL)-(1- Hydroxyymethyl) propylmethacrylamide/n-butyl acrylate) (p(DL-HMPMA/nBA) and poly(2-(N,N′-dimethylamino)ethyl methacrylate/n-butyl acrylate) (p(DMAEMA/nBA)) were synthesized, which upon coalesce to form solid continuous films. The presence of lower glass transition (Tg) nBA components not only facilitate film formation, but also provide sufficient free volume for polymer chain rearrangements. These studies showed that coalesced films exhibit 3D dimensional changes upon external stimuli, which are attributed to the collapse and conformational changes of stimuli-responsive components as well as buckling …


Rational Design Of Self-Assembled Nanostructures Based On Polymers Synthesized Via Aqueous Reversible Addition-Fragmentation Chain Transfer Polymerization, Stacey Kirkland York May 2010

Rational Design Of Self-Assembled Nanostructures Based On Polymers Synthesized Via Aqueous Reversible Addition-Fragmentation Chain Transfer Polymerization, Stacey Kirkland York

Dissertations

Recent advances in reversible addition-fragmentation chain transfer (RAFT) polymerization have allowed the rational, bottom-up design of biorelevant assemblies. Utilizing foresight, polymers can be tailored to self-assemble into nano-, micro-, and macroscopic structures. Given the size scale on which rationally-designed polymers can be tailored, they hold significant promise in the biomedical field. For example, nanoscale materials can be designed to carry small-molecule and gene therapeutics while macroscopic structures can be tailored for cell growth scaffolds. The design process begins by selecting monomers, chain transfer agents, and reaction conditions which will yield the desired polymer architecture and composition.

The work herein builds …


Aqueous Raft Synthesis Of Stimuli-Responsive, Amphiphilic Block Copolymers And Self-Assembly Behavior In Solution And Incorporation Into Lbl Films, Matthew Grady Kellum May 2010

Aqueous Raft Synthesis Of Stimuli-Responsive, Amphiphilic Block Copolymers And Self-Assembly Behavior In Solution And Incorporation Into Lbl Films, Matthew Grady Kellum

Dissertations

Of all the living radical polymerization techniques, reversible addition– fragmentation chain transfer (RAFT) polymerization is arguably the most versatile in terms of the reaction conditions (e.g. temperature and solvent selection), monomer selection (e.g. neutral, anionic, cationic, and zwitterionic), and purification. Since the introduction of RAFT in 1998, the McCormick research group and others including the Lowe, Sumerlin, and Davis research groups have synthesized a wide range of (co)polymers with predetermined molecular weights, low polydispersities, and advanced architectures utilizing aqueous RAFT (ARAFT) polymerization. These research groups have also studied how various block copolymers exhibit stimuli-responsive behavior due to a change in …


Investigation Of Novel Quasiliving Polyisobutylene Chain-End Functionalization (Quenching) Methods, David Lee Morgan May 2010

Investigation Of Novel Quasiliving Polyisobutylene Chain-End Functionalization (Quenching) Methods, David Lee Morgan

Dissertations

This volume recounts efforts toward the development and understanding of chain functionalization techniques involving the direct addition of nucleophiles to quasiliving polyisobutylene (PIB). Nucleophiles included in the study were sterically hindered organic bases, (di)sulfides, N-substituted pyrroles, and alkoxybenzenes. A kinetic investigation of the end-quenching of TiCl4-catalyzed quasiliving PIB with sterically hindered amines was used to determine the mode of interaction with TiCl4 and the active species responsible for -proton abstraction. 2,5-disubstituted-N-hydropyrroles formed pyrrole-TiCl3 adducts that were active in formation of exo-olefin chain ends; whereas, with other sterically hindered amines, only an equilibrium fraction of the amine that did not complex …


Synthesis, Characterization, And Deuterium Labeling Of Polyamides Studied By Nuclear Magnetic Resonance Spectroscopy, Christopher Allen Lange May 2010

Synthesis, Characterization, And Deuterium Labeling Of Polyamides Studied By Nuclear Magnetic Resonance Spectroscopy, Christopher Allen Lange

Dissertations

The synthesis, characterization, and deuterium labeling of polyamides have been investigated. In Chapter II, selective deuterium labeling of various polyamides was demonstrated via a facile method which does not require organic solvent or catalyst. Quantitative solution-state NMR analysis showed deuterium incorporation at the carbon alpha to the carbonyl ranged from 20-75%. Incorporation in ε-caprolactam increased with repeated treatments. Isotopic shift effects for the deuterated materials were additive for all sites within experimental error.

In Chapter III, the effect of stoichiometric imbalances on the polymerization of poly(dodecamethylene terephthalamide)was investigated. Molecular weight was varied by polymerizing the monomer salt with excess diaminododecane, …


Structure-Property Relationships In The Formation Of Polyphenylsulfone Molecular Composites And Nanocomposites, Paul Joseph Jones May 2010

Structure-Property Relationships In The Formation Of Polyphenylsulfone Molecular Composites And Nanocomposites, Paul Joseph Jones

Dissertations

As the constituent phases in a polymer composite approach the molecular level, specific phenomena occur that can lead to significant changes in material properties when only minimal quantities of the additive are incorporated into the polymer matrix. Molecular composite and nanocomposites are state-of-the-art polymeric materials that contain nanostructured additives effectively dispersed within polymer matrices. The properties of molecular composites and nanocomposites are directly related to the interactions of the nanostructured additive and the polymer matrix. Subtle changes to the nanostructured additive can have profound effects on the ultimate properties of the composite material. Therefore, understanding the structure-property relationships in these …


Investigation Of Network Architecture Development And Properties In Thermoset Matrices, Jeremy Owen Swanson Jan 2010

Investigation Of Network Architecture Development And Properties In Thermoset Matrices, Jeremy Owen Swanson

Dissertations

Matrices employed in composite materials directly influence overall composite properties. In all thermoset materials, molecular level interactions and transformations during cure result in heterogeneous architecture. Variability in connectivity results from the often dramatic spatial and topological changes that occur during the crosslinking process. Compatibility (fillers, pigments, additives), temperature gradients and reactivity differences in the precursors only serve to increase the complexity of network formation. The objective of the research herein is to characterize and understand the relationships between cure conditions, conversion, connectivity, network architecture and properties in glassy thermosetting matrix resins.

In this research, epoxy and vinyl ester resins (VERs) …