Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Do Low-Mercury Terrestrial Resources Subsidize Low-Mercury Growth Of Stream Fish? Differences Between Species Along A Productivity Gradient, Darren M. Ward, Keith H. Nislow, Carol L. Folt Nov 2012

Do Low-Mercury Terrestrial Resources Subsidize Low-Mercury Growth Of Stream Fish? Differences Between Species Along A Productivity Gradient, Darren M. Ward, Keith H. Nislow, Carol L. Folt

Dartmouth Scholarship

Low productivity in aquatic ecosystems is associated with reduced individual growth of fish and increased concentrations of methylmercury (MeHg) in fish and their prey. However, many stream-dwelling fish species can use terrestrially-derived food resources, potentially subsidizing growth at low-productivity sites, and, because terrestrial resources have lower MeHg concentrations than aquatic resources, preventing an increase in diet-borne MeHg accumulation. We used a large-scale field study to evaluate relationships among terrestrial subsidy use, growth, and MeHg concentrations in two stream-dwelling fish species across an in-stream productivity gradient. We sampled young-of-the-year brook trout ( Salvelinus fontinalis ) and Atlantic salmon ( Salmo salar …


Surficial Redistribution Of Fallout 131iodine In A Small Temperate Catchment, Joshua D. Landis, Nathan T. Hamm, Carl E. Renshaw, W. Brian Dade, Francis J. Magilligan, John D. Gartner Mar 2012

Surficial Redistribution Of Fallout 131iodine In A Small Temperate Catchment, Joshua D. Landis, Nathan T. Hamm, Carl E. Renshaw, W. Brian Dade, Francis J. Magilligan, John D. Gartner

Dartmouth Scholarship

Isotopes of iodine play significant environmental roles, including a limiting micronutrient (127I), an acute radiotoxin (131I), and a geochemical tracer (129I). But the cycling of iodine through terrestrial ecosystems is poorly understood, due to its complex environmental chemistry and low natural abundance. To better understand iodine transport and fate in a terrestrial ecosystem, we traced fallout 131iodine throughout a small temperate catchment following contamination by the 11 March 2011 failure of the Fukushima Daiichi nuclear power facility. We find that radioiodine fallout is actively and efficiently scavenged by the soil system, where it …