Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Australian Institute for Innovative Materials - Papers

2015

Electron

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Contamination Mitigation Strategies For Scanning Transmission Electron Microscopy, David R. G Mitchell Jan 2015

Contamination Mitigation Strategies For Scanning Transmission Electron Microscopy, David R. G Mitchell

Australian Institute for Innovative Materials - Papers

Modern scanning transmission electron microscopy (STEM) enables imaging and microanalysis at very high magnification. In the case of aberration-corrected STEM, atomic resolution is readily achieved. However, the electron fluxes used may be up to three orders of magnitude greater than those typically employed in conventional STEM. Since specimen contamination often increases with electron flux, specimen cleanliness is a critical factor in obtaining meaningful data when carrying out high magnification STEM. A range of different specimen cleaning methods have been applied to a variety of specimen types. The contamination rate has been measured quantitatively to assess the effectiveness of cleaning. The …


Enhanced Electron Lifetime Of Cdse/Cds Quantum Dot (Qd) Sensitized Solar Cells Using Znse Core-Shell Structure With Efficient Regeneration Of Quantum Dots, Rasin K. Ahmed, Long Zhao, Attila J. Mozer, Geoffrey D. Will, John M. Bell, Hongxia Wang Jan 2015

Enhanced Electron Lifetime Of Cdse/Cds Quantum Dot (Qd) Sensitized Solar Cells Using Znse Core-Shell Structure With Efficient Regeneration Of Quantum Dots, Rasin K. Ahmed, Long Zhao, Attila J. Mozer, Geoffrey D. Will, John M. Bell, Hongxia Wang

Australian Institute for Innovative Materials - Papers

Research on development of efficient passivation materials for high performance and stable quantum dot sensitized solar cells (QDSCs) is highly important. While ZnS is one of the most widely used passivation material in QDSCs, an alternative material based on ZnSe which was deposited on CdS/CdSe/TiO2 photoanode to form a semi-core/shell structure has been found to be more efficient in terms of reducing electron recombination in QDSCs in this work. It has been found that the solar cell efficiency was improved from 1.86% for ZnSe0 (without coating) to 3.99% using 2 layers of ZnSe coating (ZnSe2) deposited by successive ionic …


A Decaheme Cytochrome As A Molecular Electron Conduit In Dye-Sensitized Photoanodes, Ee Taek Hwang, Khizar Sheikh, Katherine L. Orchard, Daisuke Hojo, Valentin Radu, Chong-Yong Lee, Emma Ainsworth, Colin Lockwood, Manuela A. Gross, Tadafumi Adschiri, Erwin Reisner, Julea N. Butt, Lars J. C Jeuken Jan 2015

A Decaheme Cytochrome As A Molecular Electron Conduit In Dye-Sensitized Photoanodes, Ee Taek Hwang, Khizar Sheikh, Katherine L. Orchard, Daisuke Hojo, Valentin Radu, Chong-Yong Lee, Emma Ainsworth, Colin Lockwood, Manuela A. Gross, Tadafumi Adschiri, Erwin Reisner, Julea N. Butt, Lars J. C Jeuken

Australian Institute for Innovative Materials - Papers

In nature, charge recombination in light-harvesting reaction centers is minimized by efficient charge separation. Here, it is aimed to mimic this by coupling dye-sensitized TiO2 nanocrystals to a decaheme protein, MtrC from Shewanella oneidensis MR-1, where the 10 hemes of MtrC form a ≈7-nm-long molecular wire between the TiO2 and the underlying electrode. The system is assembled by forming a densely packed MtrC film on an ultra-flat gold electrode, followed by the adsorption of approximately 7 nm TiO2 nanocrystals that are modified with a phosphonated bipyridine Ru(II) dye (RuP). The step-by-step construction of the MtrC/TiO2 system is monitored with (photo)electrochemistry, …


Enhanced Electron Lifetimes In Dye-Sensitized Solar Cells Using A Di-Chromophoric Porphyrin: The Utility Of Inter-Molecular Forces, Long Zhao, Pawel W. Wagner, Holly Van Der Salm, Keith C. Gordon, Shogo Mori, Attila J. Mozer Jan 2015

Enhanced Electron Lifetimes In Dye-Sensitized Solar Cells Using A Di-Chromophoric Porphyrin: The Utility Of Inter-Molecular Forces, Long Zhao, Pawel W. Wagner, Holly Van Der Salm, Keith C. Gordon, Shogo Mori, Attila J. Mozer

Australian Institute for Innovative Materials - Papers

Electron lifetimes in dye-sensitized solar cells employing a porphyrin dye, an organic dye, a 1:1 mixture of the two dyes and a di-chromophoric dye design consisting of the two dyes using a non-conjugated linker were measured, suggesting that the dispersion force of the organic dyes has a significant detrimental effect on the electron lifetime and that the di-chromophoric design can be utilized to control the effect of the dispersion force.


Coherent And Tunable Terahertz Radiation From Graphene Surface Plasmon Polarirons Excited By Cyclotron Electron Beam, Tao Zhao, Sen Gong, Min Hu, Renbin Zhong, Diwei Liu, Xiaoxing Chen, Ping Zhang, Xinran Wang, C Zhang, Peiheng Wu, Shenggang Liu Jan 2015

Coherent And Tunable Terahertz Radiation From Graphene Surface Plasmon Polarirons Excited By Cyclotron Electron Beam, Tao Zhao, Sen Gong, Min Hu, Renbin Zhong, Diwei Liu, Xiaoxing Chen, Ping Zhang, Xinran Wang, C Zhang, Peiheng Wu, Shenggang Liu

Australian Institute for Innovative Materials - Papers

Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of …