Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Wright State University

Series

II-VI semiconductors

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

Stable Highly Conductive Zno Via Reduction Of Zn Vacancies, David C. Look, Timothy C. Droubay, Scott A. Chambers Jan 2012

Stable Highly Conductive Zno Via Reduction Of Zn Vacancies, David C. Look, Timothy C. Droubay, Scott A. Chambers

Physics Faculty Publications

Growth of Ga-doped ZnO by pulsed laser deposition at 200 °C in an ambient of Ar and H2produces a resistivity of 1.5 × 10−4 Ω-cm, stable to 500 °C. The resistivity can be further reduced to 1.2 × 10−4 Ω-cm by annealing on Zn foil, which reduces the compensating Zn-vacancy acceptor concentration NA to 5 × 1019 cm−3, only 3% of the Ga-donor concentration ND of 1.6 × 1021 cm−3, with ND and NA determined from a degenerate mobility theory. The plasmon-resonance wavelength is only 1060 …


Highly Conductive Zno Grown By Pulsed Laser Deposition In Pure Ar, Robin C. Scott, Kevin D. Leedy, Burhan Bayraktaroglu, David C. Look, Yong-Hang Zhang Aug 2010

Highly Conductive Zno Grown By Pulsed Laser Deposition In Pure Ar, Robin C. Scott, Kevin D. Leedy, Burhan Bayraktaroglu, David C. Look, Yong-Hang Zhang

Physics Faculty Publications

Ga-doped ZnO was deposited by pulsed laser deposition at 200 °C on SiO2/Si, Al2O3, or quartz in 10 mTorr of pure Ar. The as-grown, bulk resistivity at 300 K is 1.8×10−4 Ω cm, three-times lower than that of films deposited at 200 °C in 10 mTorr of O2 followed by an anneal at 400 °C in forming gas. Furthermore, depth uniformity of the electrical properties is much improved. Mobility analysis shows that this excellent resistivity is mostly due to an increase in donor concentration, rather than a decrease in acceptor concentration. Optical …


Mobility Analysis Of Highly Conducting Thin Films: Application To Zno, David C. Look, K. D. Leedy, D. H. Tomich, B. Bayraktaroglu Feb 2010

Mobility Analysis Of Highly Conducting Thin Films: Application To Zno, David C. Look, K. D. Leedy, D. H. Tomich, B. Bayraktaroglu

Physics Faculty Publications

Hall-effect measurements have been performed on a series of highly conductive thin films of Ga-doped ZnO grown by pulsed laser deposition and annealed in a forming-gas atmosphere (5% H2 in Ar). The mobility as a function of thickness d is analyzed by a simple formula involving only ionized-impurity and boundary scattering and having a single fitting parameter, the acceptor/donor concentration ratio K = NA/ND. For samples with d = 3–100 nm, Kavg = 0.41, giving ND = 4.7×1020 and NA = 1.9×1020 cm−3. Thicker samples require a …


Metal Contacts On Bulk Zno Crystal Treated With Remote Oxygen Plasma, Z-Q. Fang, B. Claflin, David C. Look, Y. F. Dong, L. Brillson May 2009

Metal Contacts On Bulk Zno Crystal Treated With Remote Oxygen Plasma, Z-Q. Fang, B. Claflin, David C. Look, Y. F. Dong, L. Brillson

Physics Faculty Publications

To study the quality of thin metal/ZnO Schottky contacts (SCs), temperature-dependent current-voltage (I-V), capacitance-voltage, deep level transient spectroscopy, and photoluminescence measurements were performed using bulk, vapor-phase ZnO, treated by remote oxygen plasma (ROP). Au/ZnO and Pd/ZnO contacts on both O and Zn faces are compared as a function of the ROP processing sequence and duration. We find that (i) as the duration of ROP treatment increases from 2 to 4 h, Au/ZnO contacts on the Zn face, deposited before ROP treatment, become rectifying, while those on the O face remain Ohmic; (ii) with long-term ROP …


Uv Light-Induced Changes To The Surface Conduction In Hydrothermal Zno, B. Claflin, David C. Look May 2009

Uv Light-Induced Changes To The Surface Conduction In Hydrothermal Zno, B. Claflin, David C. Look

Physics Faculty Publications

High quality, bulk ZnO crystals grown by Tokyo Denpa using the hydrothermal process typically exhibit a room temperature carrier concentration in the 1013–1014 cm−3 range and a low mobility, conductive surface layer, observed at low temperature, with a sheet concentration on the order of 1012–1013 cm−2. In the sample discussed here, bulk conduction is controlled by two donor levels at 50 and 400 meV with concentrations of 1.2×1016 and 1.5×1016 cm−3, respectively. Temperature-dependent photo-Hall-effect measurements, using blue/UV light, in vacuum show an increase in the surface sheet …


Polarity-Related Asymetry At Zno Surfaces And Metal Interfaces, Y. F. Dong, Z-Q. Fang, David C. Look, Daniel R. Doutt, M. J. Hetzer, L. J. Brillson May 2009

Polarity-Related Asymetry At Zno Surfaces And Metal Interfaces, Y. F. Dong, Z-Q. Fang, David C. Look, Daniel R. Doutt, M. J. Hetzer, L. J. Brillson

Physics Faculty Publications

Clean ZnO (0001) Zn- and (000(/1)) O-polar surfaces and metal interfaces have been systematically studied by depth-resolved cathodoluminescence spectroscopy, photoluminescence, current-voltage and capacitance-voltage measurements, and deep level transient spectroscopy. Zn-face shows higher near band edge emission and lower near surface defect emission. Even with remote plasma decreases of the 2.5 eV near surface defect emission, (0001)-Zn face emission quality still exceeds that of (000(/1))-O face. The two polar surfaces and corresponding metal interfaces also present very different luminescence evolution under low-energy electron beam irradiation. Ultrahigh vacuum-deposited Au and Pd diodes on as-received and O2/He plasma-cleaned surfaces display not …


In-Implanted Zno: Controlled Degenerate Surface Layer, David C. Look, Gary C. Farlow, F. Yaqoob, L. H. Vanamurthy, M. Huang May 2009

In-Implanted Zno: Controlled Degenerate Surface Layer, David C. Look, Gary C. Farlow, F. Yaqoob, L. H. Vanamurthy, M. Huang

Physics Faculty Publications

In was implanted into bulk ZnO creating a square profile with a thickness of about 100 nm and an In concentration of about 1×1020 cm-3. The layer was analyzed with Rutherford backscattering, temperature-dependent Hall effect, and low-temperature photoluminescence measurements. The implantation created a nearly degenerate carrier concentration n of about 2×1019 cm-3, but with a very low mobility μ, increasing from about 0.06 cm2/V s at 20 K to about 2 cm2/V s at 300 K. However, after annealing at 600 °C for 30 min, n increased to about 5×10 …


Ga-Related Photoluminescence Lines In Ga-Doped Zno Grown By Plasma-Assisted Molecular-Beam Epitaxy, Z. Yang, David C. Look, J. L. Liu Feb 2009

Ga-Related Photoluminescence Lines In Ga-Doped Zno Grown By Plasma-Assisted Molecular-Beam Epitaxy, Z. Yang, David C. Look, J. L. Liu

Physics Faculty Publications

Low-temperature photoluminescence (PL) and temperature-dependent Hall-effect (T-Hall) measurements were carried out in undoped and Ga-doped ZnO thin films grown by molecular-beam epitaxy. As the carrier concentration increases from 1.8×1018 to 1.8×1020 cm−3, the dominant PL line at 9 K changes from I1 (3.368–3.371 eV) to IDA (3.317–3.321 eV), and finally to I8 (3.359 eV). The dominance of I1, due to ionized-donor bound excitons, is unexpected in n-type samples but is shown to be consistent with the T-Hall results. We also show that IDA has characteristics of …


Electron And Hole Traps In N-Doped Zno Grown On P-Type Si Substrate By Mocvd, Zhaoqiang Fang, Bruce B. Claflin, David C. Look, Lei L. Kerr, Xiaonan Li Jan 2007

Electron And Hole Traps In N-Doped Zno Grown On P-Type Si Substrate By Mocvd, Zhaoqiang Fang, Bruce B. Claflin, David C. Look, Lei L. Kerr, Xiaonan Li

Physics Faculty Publications

Electron and hole traps in N-doped ZnO were investigated using a structure of n+-ZnO:Al/i-ZnO/ZnO:N grown on a p-Si substrate by metalorganic chemical vapor deposition (for growth of the ZnO:N layer) and sputtering deposition (for growth of the i-ZnO and n+-ZnO:Al layers). Current-voltage and capacitance-voltage characteristics measured at temperatures from 200 to 400 K show that the structure is an abrupt n+p diode with very low leakage currents. By using deep level transient spectroscopy, two hole traps, H3 (0.35 eV) and H4 (0.48 eV), are found in the p-Si …


High Spatial Resolution Thermal Conductivity Of Bulk Zno (0001), Diana I. Florescu, L. G. Mourokh, Fred H. Pollak, David C. Look, G. Cantwell, X. Li Jan 2002

High Spatial Resolution Thermal Conductivity Of Bulk Zno (0001), Diana I. Florescu, L. G. Mourokh, Fred H. Pollak, David C. Look, G. Cantwell, X. Li

Physics Faculty Publications

We measured high spatial/depth resolution 300 K thermal conductivity κ of the Zn and O surfaces of two bulk n-type ZnO (0001) samples, grown by a vapor-phase transport method, using scanning thermal microscopy (SThM). The thermal investigation was performed in both point-by-point (∼2 μm resolution) and area-scan modes. On the first sample κ=1.16±0.08 (Zn face)/1.10±0.09 (O face) W/cm K while for the second material κ=1.02±0.07 (Zn face)/0.98±0.08 (O face) W/cm K. These are the highest κ values reported on ZnO. A correlation between SThM area-scan readings and surface topography was established by simultaneously performing atomic force microscopy scans. The …


Ga-Doped Zno Films Grown On Gan Templates By Plasma-Assisted Molecular-Beam Epitaxy, H. J. Ko, Yanfang Chen, S. K. Hong, H. Wenisch, T. Yao, David C. Look Dec 2000

Ga-Doped Zno Films Grown On Gan Templates By Plasma-Assisted Molecular-Beam Epitaxy, H. J. Ko, Yanfang Chen, S. K. Hong, H. Wenisch, T. Yao, David C. Look

Physics Faculty Publications

We have investigated the structural and optical properties of Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. The carrier concentration in Ga-doped ZnO films can be controlled from 1.33×1018/cm3 to 1.13×1020/cm3. Despite high Ga incorporation, the linewidth of (0002) ω-rocking curves of Ga-doped ZnO films still lies in the range from 5 to 15 arc min. Photoluminescence (PL) spectra of Ga-doped ZnO films show dominant near-bandedge emission with negligibly weak deep-level emission, independent of carrier concentration. The PL spectrum exhibits a new emission line at 3.358 eV, which corresponds to …