Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Wright State University

Series

2010

Zinc compounds

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Highly Conductive Zno Grown By Pulsed Laser Deposition In Pure Ar, Robin C. Scott, Kevin D. Leedy, Burhan Bayraktaroglu, David C. Look, Yong-Hang Zhang Aug 2010

Highly Conductive Zno Grown By Pulsed Laser Deposition In Pure Ar, Robin C. Scott, Kevin D. Leedy, Burhan Bayraktaroglu, David C. Look, Yong-Hang Zhang

Physics Faculty Publications

Ga-doped ZnO was deposited by pulsed laser deposition at 200 °C on SiO2/Si, Al2O3, or quartz in 10 mTorr of pure Ar. The as-grown, bulk resistivity at 300 K is 1.8×10−4 Ω cm, three-times lower than that of films deposited at 200 °C in 10 mTorr of O2 followed by an anneal at 400 °C in forming gas. Furthermore, depth uniformity of the electrical properties is much improved. Mobility analysis shows that this excellent resistivity is mostly due to an increase in donor concentration, rather than a decrease in acceptor concentration. Optical …


Mobility Analysis Of Highly Conducting Thin Films: Application To Zno, David C. Look, K. D. Leedy, D. H. Tomich, B. Bayraktaroglu Feb 2010

Mobility Analysis Of Highly Conducting Thin Films: Application To Zno, David C. Look, K. D. Leedy, D. H. Tomich, B. Bayraktaroglu

Physics Faculty Publications

Hall-effect measurements have been performed on a series of highly conductive thin films of Ga-doped ZnO grown by pulsed laser deposition and annealed in a forming-gas atmosphere (5% H2 in Ar). The mobility as a function of thickness d is analyzed by a simple formula involving only ionized-impurity and boundary scattering and having a single fitting parameter, the acceptor/donor concentration ratio K = NA/ND. For samples with d = 3–100 nm, Kavg = 0.41, giving ND = 4.7×1020 and NA = 1.9×1020 cm−3. Thicker samples require a …


Structural Investigations And Magnetic Properties Of Sol-Gel Ni0.5zn0.5fe2o4 Thin Films For Microwave Heating, Pengzhao Z. Gao, Evgeny V. Rebrov, Tiny M. W. G. M. Verhoeven, Jaap C. Schouten, Richard Kleismit, Gregory Kozlowski, John S. Cetnar, Zafer Turgut, Guru Subramanyam Feb 2010

Structural Investigations And Magnetic Properties Of Sol-Gel Ni0.5zn0.5fe2o4 Thin Films For Microwave Heating, Pengzhao Z. Gao, Evgeny V. Rebrov, Tiny M. W. G. M. Verhoeven, Jaap C. Schouten, Richard Kleismit, Gregory Kozlowski, John S. Cetnar, Zafer Turgut, Guru Subramanyam

Physics Faculty Publications

Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673–1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation …