Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

William & Mary

Polymer Chemistry

1996

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Low-Valent Metal Complexes As Reductive Coupling Agents For Smoke Suppression In Poly(Vinyl Chloride), Panagiotis Ioannou Kourtesis Jan 1996

Low-Valent Metal Complexes As Reductive Coupling Agents For Smoke Suppression In Poly(Vinyl Chloride), Panagiotis Ioannou Kourtesis

Dissertations, Theses, and Masters Projects

No abstract provided.


Characterizing The Degradation Of Nylon-11 And Pvdf In A Flexible Oil Pipe And Cure Monitoring Of Chemflake Vinylester, John Chen Yang Jan 1996

Characterizing The Degradation Of Nylon-11 And Pvdf In A Flexible Oil Pipe And Cure Monitoring Of Chemflake Vinylester, John Chen Yang

Dissertations, Theses, and Masters Projects

No abstract provided.


Synthesis And Characterization Of Boron-Containing Polymeric Materials For Neutron Shielding Applications, Michael B. Glasgow Jan 1996

Synthesis And Characterization Of Boron-Containing Polymeric Materials For Neutron Shielding Applications, Michael B. Glasgow

Dissertations, Theses, and Masters Projects

The development of boron-containing polymeric materials for neutron shielding applications was undertaken. Three types of materials were characterized for physical and thermal properties: boron powder-filled epoxy composites, carborane polyamides having boron chemically bonded into the polymer, and boron-loaded polyimide thin films. Addition of amorphous submicron boron powder did not affect significantly the thermal performance of the epoxy. The 17% boron loading produced a 26% increase in compressive failure strength and a 68% increase in the compressive modulus. 0.125 inch thick specimens containing 17% boron absorbed 92% of incident neutrons from a 5-Curie Pu/Be source compared with {dollar}<{dollar}1% for the neat epoxy. Dispersion of the boron in the epoxy was improved with the addition of larger size crystalline boron powders. Carborane polyamides containing up to 35% boron were thermally stable up to 400{dollar}\sp\circ{dollar}C in air. The polymers had hydrogen/boron ratios from 2.0 to 3.8 and were soluble in several organic solvents. Polymer solutions were processed into clear, colored thin films. Boron-filled polyamic acid solutions of a PMDA-ODA polyimide containing up to 10% boron were processed into thin films. Neutron absorption of the opaque films measured in a 5-Curie Pu/Be neutron source was linear with boron concentration and film thickness. The fraction of neutrons absorbed varied linearly with boron concentration and film thickness. The applicability of boron-containing materials to the aerospace, nuclear power and accelerator industries was investigated.